MAC2313, Calculus III
 Exam 2 Review

This review is not designed to be comprehensive, but to be representative of the topics covered on the exam.

1. Find and sketch the domain of the function.
(1) $f(x, y)=\ln (x+y+1)$
(2) $f(x, y)=\sqrt{4-x^{2}-y^{2}}+\sqrt{1-x^{2}}$
2. Show that the limit does not exist.
(1) $\lim _{(x, y) \rightarrow(1,1)} \frac{x y^{2}-1}{y-1}$
(2) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}+y^{3}}{x y^{2}}$
3. Evaluate the following limits.
(1) $\lim _{(x, y) \rightarrow(1,1)} \frac{x^{3} y^{3}-1}{x y-1}$
(2) $\lim _{(x, y) \rightarrow(2,2)} \frac{x+y-4}{\sqrt{x+y}-2}$
(3) $\lim _{(x, y) \rightarrow(0,0)} \frac{e^{y} \sin (2 x)}{x}$
(4) $\lim _{(x, y) \rightarrow(0,0)}\left(x^{2}+y^{2}\right) \ln \left(x^{2}+y^{2}\right)$
4. The contour map of a function f is shown.
(1) Is $f_{x}(3,2)$ positive or negative?
(2) Which is greater, $f_{y}(2,1)$ or $f_{y}(2,2)$?

5. Consider the function $f(x, y)=\left\{\begin{array}{ll}\frac{\sin (x y)}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{array}\right.$.
(1) Is f continuous at $(0,0)$?
(2) Is f differentiable at $(0,0)$?
6. Consider the function $f(x, y)=\left\{\begin{array}{ll}\frac{x^{2} y^{2}}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 1 & (x, y)=(0,0)\end{array}\right.$.
(1) Is f continuous at $(0,0)$?
(2) Can you redefine the function so that f continuous at $(0,0)$?
7. Find all the first and second order partial derivatives of $f(x, y)=x^{y}$.
8. Find the linear approximation of the function $f(x, y, z)=x^{3} \sqrt{y^{2}+z^{2}}$ at the point $(2,3,4)$ and use it to estimate the number $(1.98)^{3} \sqrt{(3.02)^{2}+(4.01)^{2}}$.
9. Use differentials to estimate the amount of metal in a closed cylindrical can that is 30 cm high and 5 cm in radius if the metal in the top and the bottom is 0.3 cm thick and the metal in the sides is 0.05 cm thick.
10. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at $(0,1,2)$ if $x-y z+\cos (x y z)=2$.
11. Find an equation of the tangent plane to the surface $z=x \sin (x+y)$ at the point $(-1,1,0)$.
12. Let $z=\sqrt{x^{2}+y^{2}}$. Show that $\frac{\partial^{2} z}{\partial x^{2}} \frac{\partial^{2} z}{\partial y^{2}}=\left(\frac{\partial^{2} z}{\partial x \partial y}\right)^{2}$.
13. Find $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial \theta}$ when $r=2$ and $\theta=\pi / 2$ if $w=x y+y z+z x$, and $x=r \cos \theta, y=r \sin \theta, z=r \theta$.
14. Find the directional derivative of $f(x, y)=x^{2} e^{-y}$ at the point $(-2,0)$ in the direction toward the point $(2,-3)$.
15. Let $f(x, y)=\ln (1+x y)$.
(1) Find the unit vectors that give the direction of steepest ascent and steepest descent at $(1,2)$.
(2) Find a unit vector that points in a direction of no change at $(1,2)$.
16. Find equations of (1) the tangent plane and (2) the normal line to the surface $x y+y z+z x=5$ at the point $(1,2,1)$.
17. Where does the normal line to the paraboloid $z=x^{2}+y^{2}$ at the point $(1,1,2)$ intersect the paraboloid a second time?
18. The plane $y+z=3$ intersects the cylinder $x^{2}+y^{2}=5$ in an ellipse. Find parametric equations for the tangent line to this ellipse at the point $(1,2,1)$.
19. Find the points on the surface $2 x^{3}+y-z^{2}=5$ at which the tangent plane is parallel to the plane $24 x+y-6 z=3$.
20. Let $f(x, y)=3 x^{2}-3 x y^{2}+y^{3}+3 y^{2}$. Find the critical points of f and classify each critical point.
21. Find the local maximum and minimum values and saddle point(s) of the function $f(x, y)=\left(x^{2}+y^{2}\right) e^{-x}$.
22. Find the absolute maximum and minimum values of
(1) $f(x, y)=x^{2}+y^{2}-2 x$ on the closed triangular region with vertices $(2,0)$, $(0,2)$, and $(0,-2)$
(2) $f(x, y)=\left(x^{2}+2 y^{2}\right) e^{-x^{2}-y^{2}}$ on the disk $\left\{(x, y) \mid x^{2}+y^{2} \leq 4\right\}$
(3) $f(x, y)=e^{-x y}$ on $\left\{(x, y) \mid x^{2}+4 y^{2} \leq 1\right\}$
23. Find the maximum and minimum values of
(1) $f(x, y, z)=x+y+z$ subject to $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$
(2) $f(x, y, z)=x^{2}+y^{2}+z^{2}$ subject to $x-y=1$ and $y^{2}-z^{2}=1$
24. Find the point(s) on the surface $x^{2}-y z=1$ that are closest to the origin.
25. Find the point on the ellipse $x^{2}+6 y^{2}+3 x y=40$ with the largest x coordinate.

26. True or False:
(1) There exists a function f with continuous second partial derivatives such that $f_{x}=x+y^{2}$ and $f_{y}=x-y^{2}$.
(2) If $f_{x}(a, b)$ and $f_{y}(a, b)$ both exist, then f is differentiable at (a, b).
(3) If $f(x, y)$ is differentiable, then the rate of change of f at the point (a, b) in the direction of \vec{w} is $\nabla f(a, b) \cdot \vec{w}$.
(4) If $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$, then f must have a local maximum or minimum at (a, b).
(5) If $f(x, y)$ is differentiable and f has a local minimum at (a, b), then $D_{\vec{u}} f(a, b)=0$ for any unit vector \vec{u}.
