- 1) The equilibrium constant K_c for forming Nitrogen monoxide gas from its elements is 1.0×10^{-5} at 1500K. If 0.80 mol of N_2 and 0.20 mol of O_2 were placed in a 1L flask, what is the equilibrium concentration of NO?
 - A) 6.32x10⁻⁴ M
 - B) 1.26x10⁻³ M
 - C) 3.16x10⁻⁴ M
 - D) 8.94x10⁻⁴ M
 - E) 1.79x10⁻³ M
- 2) K_c for the reaction $C_2 + D_2 \leftrightarrow 2CD$ is 2.0 at 600°C. 0.50 mol of each reactant are put in a 2L flask, predict the percent yield of CD at 600°C.
- 3) For which of the following reactions does $K_c = K_p$ at 25°C?

I: 3 A(s) + 5 B(g)
$$\rightleftharpoons$$
 3 AB(g) + B₂ (g), Δ H = 30 J

II: 2 C(g) + 2 D(g)
$$\rightleftharpoons$$
 4 CD(g), Δ H = -15 J

III: 2
$$Y(s) + E_2Y(g) \rightleftharpoons YE(g) + Y_2(g) + E(g)$$
, $\Delta H = 0 J$

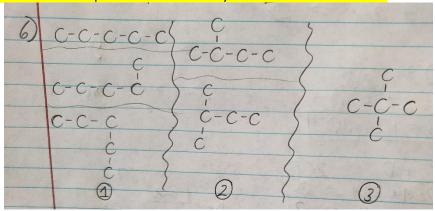
- A) I only B) II only C) III only D) I and II only E) II and III only
- 4) Sodium-24 is a radioactive isotope that decays via first order kinetics and has a half-life of 15 hours. What fraction of an original sample of sodium-24 will decompose in 3 days?

96.4%

5) Given the overall reaction $2H_2 + 2NO \rightarrow 2H_2O + N_2$ and the following mechanism:

Step 1: NO + NO
$$\rightleftharpoons$$
 N₂O₂ (fast)

Step 2:
$$N_2O_2 + H_2 \rightarrow H_2O + N_2O$$
 (slow)


Step 3:
$$N_2O + H_2 \rightarrow N_2 + H_2O$$
 (fast)

Which of the following is/are true?

- I: The rate law for the overall reaction is Rate = $k[N_2O_2][H_2]$
- II: The absolute value of the rate of change of H₂ is ½ the rate of change of N₂
- III: The rate of the reaction is dependent only on H₂
- A) Only I B) Only II C) II and III D) I and II E) None

6) Draw all the structural isomers of C₅H₁₂.

There's 3 – each column represents different ways to draw the same isomer

7) Given the reaction for the following hypothetical weak acid: $HA+ H_2O \rightleftharpoons NaA + H_3O^+$, which would increase the buffer component concentration ratio?

I: Adding 0.1 M NaOH to the buffer II: Adding 0.1 M HCl to the buffer

A) I only

B) II only

C) both

D) none

8) Calculate the pH of a 0.20 M Na₂CO₃ solution. K_a of HCO₃⁻ is 4.8x10⁻¹¹

- A) 8.49
- B) 2.19
- C) 5.51
- D) 11.81
- E) 9.62

9) A 1.00g piece of chalk containing $CaCO_3$ (and other materials) was placed in 500. mL of hydrochloric acid solution with an initial pH of 1.00. After all of the $CaCO_3$ reacts with the HCl (forming CO_2 gas, H_2O , Ca^{2+} , and Cl^-), the final pH is 1.19. About what mass percent of the chalk was $CaCO_3$?

<mark>89%</mark>

10) Hypobromous acid is a commonly used disinfectant in swimming pools. At 25°C HBrO dissociates in water with a $K_a = 2.3 \times 10^{-9}$. Is this dissociation a spontaneous process when $[H_3O^+] = 6.0 \times 10^{-4}$ M, $[BrO^-] = 0.10$ M, and [HBrO] = 0.20 M?

- A) Yes, because $\Delta G > 0$
- B) No, because $\Delta G > 0$

- C) Yes, because $\Delta G < 0$
- D) No, because $\Delta G < 0$

11) What is the value for the standard free energy of the following reaction:

 $Pb(s) | Pb^{2+} (aq) | | Mg^{2+} (aq) | Mg(s)$

- A) +432.3 kJ/mol
- B) -432.3 kJ/mol
- C) +216.1 kJ/mol
- D) -216.1 kJ/mol

12) A hydrogen fuel cell operates with the following reaction taking place at the anode:

 $2H_{2(g)} + 4OH^{-} \rightarrow 4H_{2}O_{(I)} + 4e^{-}$

What volume of H_2 gas at 30°C and 120 atm is required for the fuel cell to run a motor drawing 8.5A for 10.0 hours? $\frac{0.33L}{0.33L}$

13) The magnetic moment of an inorganic complex represents the number of unpaired electrons present in its d-orbital splitting configuration. A complex $[MCl_6]^{4-}$ has a magnetic moment of around 3. Which two elements in the 3d block could be "M"?

- A) V and Ni
- B) V and Co
- C) Sc and Ni
- D) Sc and Co

14) Rank the following in order of increasing magnetism. I: $[Mn(NO_2)_6]^{1-}$ II: $[Fe(en)_3]^{2+}$ III: $[CoCl_3F_3]^{3-}$

- A) I < II < III
- B) I < III < II
- C) || < || < |
- D) || < | < ||
- E) III < I < II

15) What is the binding energy per nucleon of fluorine?

1.25x10⁻¹² J/nucleon

16) Which of the following would buffer systems would you most optimally choose to create a buffer of pH = 6.50? The Ka of $H_2B = 1 \times 10^{-5}$ and the ka of $H_2^- = 1 \times 10^{-7}$.

- A) B^{2-}/H_2B
- B) B²⁻/HB⁻
- C) $HB^{-}/H_{2}B$
- D) HB^{-}/HB_{2}
- E) B^{2-}/HB_2

17) Calculate the molar solubility of Ag_2CO_3 at 25°C. Ksp = $8.1x10^{-12}$

1.27x10⁻⁴

- 18) Which of the following reactions would you expect to be spontaneous at high temperatures but nonspontaneous at low temperatures?
 - A) An exothermic reaction with S°_{reaction} < 0
 - B) An endothermic reaction with S°_{reaction} < 0
 - C) An exothermic reaction with $S^{\circ}_{reaction} > 0$
 - D) An endothermic reaction with S°_{reaction} > 0
 - E) Such a reaction does not exist
- 19) Is MnO₄ or Br₂ a stronger oxidizing agent? Explain.

MnO₄ is a stronger oxidizing agent because its oxidation number is a larger difference from it's ground state. The oxidation number of Mn is +7 which is the maximum amount of electrons Mn can lose, whereas Br_2 is in its ground state and stable.

- 20) True or False: CaO is a more basic oxide than Rb₂O.

 False more metallic = more basic, and Rb is more metallic than Ca
- 21) Consider the complex trans- $[Co(CH_3NH_2)_4Cl_2]NO_3$, what is the coordination number and the oxidation state, respectively, of the transition metal ion? Six, +3