1) For which of the following reactions does $\mathrm{Kc}=\mathrm{Kp}$ at $25^{\circ} \mathrm{C}$?

I: $3 \mathrm{~A}(\mathrm{~s})+5 \mathrm{~B}(\mathrm{~g}) \rightleftharpoons 3 \mathrm{AB}(\mathrm{g})+\mathrm{B} 2(\mathrm{~g}), \Delta \mathrm{H}=30 \mathrm{~J}$
II: $2 \mathrm{C}(\mathrm{g})+2 \mathrm{D}(\mathrm{g}) \rightleftharpoons 4 \mathrm{CD}(\mathrm{g}), \Delta \mathrm{H}=-15 \mathrm{~J}$
III: $2 \mathrm{Y}(\mathrm{s})+\mathrm{E}_{2} \mathrm{Y}(\mathrm{g}) \rightleftharpoons \mathrm{YE}(\mathrm{g})+\mathrm{Y}_{2}(\mathrm{~g})+\mathrm{E}(\mathrm{g}), \Delta \mathrm{H}=0 \mathrm{~J}$
A) I only
B) II only
C) III only
D) I and II only
E) II and III only
2) The decomposition of acetaldehyde is shown by the reaction below. After twelve minutes, the partial pressures are the following: $\mathrm{P}_{\text {СН3 }} \mathrm{CHO}=3.4 \mathrm{~atm}, \mathrm{P}_{\mathrm{CH} 4}=0.1 \mathrm{~atm}, \mathrm{P}_{\mathrm{cO}}=$ 0.2 atm, what must be true for the reaction to reach equilibrium? $\mathrm{CH} 3 \mathrm{CHO}(\mathrm{g}) \rightleftharpoons \mathrm{CH} 4(\mathrm{~g})$ $+\mathrm{CO}(\mathrm{g}), \mathrm{Kp}=2 \times 10^{-2}$
A) $Q<K$ and shifts forwards
B) $Q<K$ and shifts backwards
C) $Q>K$ and shifts forwards
D) $Q>K$ and shifts backwards
3) When are the following reactions spontaneous? Answer in order.

Reaction I: $2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NO}(\mathrm{g}), \Delta \mathrm{H}=197.1 \mathrm{~kJ}$
Reaction II: $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}), \Delta \mathrm{H}=-91.8 \mathrm{~kJ}$
A) At high temperatures; At high temperatures
B) At low temperatures; At low temperatures
C) At high temperatures; At low temperatures
D) At low temperatures; At high temperatures
E) At high temperatures; At all temperatures
4) Which of the following reactions produce energy and how much energy is produced?

Reaction I: ${ }^{2} \mathrm{H}+{ }^{3} \mathrm{H} \rightarrow{ }^{4} \mathrm{He}+{ }^{1} \mathrm{n}$
Reaction II: ${ }^{35} \mathrm{P}+{ }^{197} \mathrm{Os} \rightarrow{ }^{231} \mathrm{~Pa}+{ }^{1} \mathrm{n}$
Masses (amu): ${ }^{1} \mathrm{n}(1.0087) ;{ }^{2} \mathrm{H}(2.0141) ;{ }^{3} \mathrm{H}(3.0160) ;{ }^{4} \mathrm{He}(4.0026) ;{ }^{35} \mathrm{P}$ (34.9733); ${ }^{90} \mathrm{Sr}$
(89.9077); ${ }^{142} \mathrm{Xe}$ (141.9297); ${ }^{197} \mathrm{Os}(196.9684) ;{ }^{231} \mathrm{~Pa}(231.0358) ;{ }^{235} \mathrm{U}$ (235.0439)
A) Reaction $\mathrm{I}: 1.7 \times 10^{12} \mathrm{~J}$
B) Reaction II: $9.3 \times 10^{12} \mathrm{~J}$
C) Reaction I: $1.7 \times 10^{15} \mathrm{~J}$
D) Reaction II: $9.3 \times 10^{15} \mathrm{~J}$
E) Neither reaction produces energy
5) What is the percent yield of $A B$ for the following reaction at equilibrium if 1.00 mole of each reactant was placed in a 2 L flask and heated to $500^{\circ} \mathrm{C}$?
$\mathrm{A}_{2}(\mathrm{~g})+\mathrm{B}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{AB}(\mathrm{g}) \mathrm{Kc}=1.778$ at $500^{\circ} \mathrm{C}$?
A) 86%
B) 39%
C) 60%
D) 27%
E) 40%

Use the following information to answer question 6:
$\mathrm{H}_{2} \mathrm{~B}, \mathrm{~K}_{\mathrm{a}}=1.0 \times 10^{-5} ; \mathrm{HB}^{-}, \mathrm{k}_{\mathrm{a}}=1.0 \times 10^{-7} ; \mathrm{HBO}_{3}, \mathrm{k}_{\mathrm{a}}=1.0 \times 10^{-9} ; \mathrm{HBO}_{2}, \mathrm{k}_{\mathrm{a}}=1.0 \times 10^{-11}$
$\mathrm{H}_{2} \mathrm{~A}, \mathrm{~K}_{\mathrm{a}}=1.0 \times 10^{-2} ; \mathrm{HA}^{-}, \mathrm{k}_{\mathrm{a}}=1.0 \times 10^{-4} ; \mathrm{HAO}_{3}, \mathrm{k}_{\mathrm{a}}=1.0 \times 10^{-6} ; \mathrm{HAO}_{2}, \mathrm{k}_{\mathrm{a}}=1.0 \times 10^{-8}$
6) Select the false statement below.
A) The H -A bond length in $\mathrm{H}_{2} A$ is likely longer than the $\mathrm{H}-\mathrm{B}$ bond length in $\mathrm{H}_{2} \mathrm{~B}$
B) The $\mathrm{H}-\mathrm{A}$ bond length in HAO_{2} is likely longer than the $\mathrm{H}-\mathrm{B}$ bond length in HBO_{2}
C) The electronegativity of A is likely greater than the electronegativity of B
D) The k_{a} of HAO_{3} is greater than the k_{a} of HAO_{2}, and this is likely related to the greater oxidation state of A in HAO_{3}
E) HA an acid
7) Predict whether the following solutions will be acidic, basic, or neutral.

The ka of ammonium is 5.6×10^{-10} and the ka of nitrous acid is 7.2×10^{-4}
$\begin{array}{lllll}\mathrm{KNO}_{2} & \mathrm{KNO}_{3} & \mathrm{NH}_{4} \mathrm{NO}_{3} & \mathrm{NH}_{4} \mathrm{NO}_{2}\end{array}$
A) Acidic, basic, neutral, basic
B) Basic, acidic, neutral, acidic
C) Basic, neutral, acidic, acidic
D) Acidic, neutral, basic, neutral
E) Neutral, acidic, acidic, acidic
8) Predict the pH of a saturated solution of $\mathrm{Ca}(\mathrm{OH})_{2}$ at $25^{\circ} \mathrm{C} . \mathrm{ksp}=7.9 \times 10^{-6}$
A) 7.22
B) 12.40
C) 1.59
D) 6.78
E) 10.30
9) You wish to make a formate/formic acid ($\mathrm{HCOO}^{--} / \mathrm{HCOOH}$) buffer solution with a pH of 3.50 by dissolving 20.0 g of solid sodium formate into 2.00 L of a formic acid solution. Which of the following is closest to the concentration of formic acid required to make this happen? Assume no significant volume change during dissolution. Ka of formic acid is 1.80×10^{-4}
A) 0.039 M
B) 0.085 M
C) 0.13 M
D) 0.26 M
E) 0.51 M
10) A current of 11.3 A is applied to 1.25 L of a solution of 0.552 M HBr converting some of the $\mathrm{H}+$ to $\mathrm{H}_{2}(\mathrm{~g})$, which bubbles out of solution. What is the pH of the solution after 73 minutes?
A) 0.161
B) 0.258
C) 0.387
D) 0.669
E) 0.849
11) Which of the following statements is true about an electrolytic cell?
A) electrons flow toward the anode
B) a nonspontaneous reaction is forced to occur
C) an electric current is produced by a chemical reaction
D) oxidation occurs at the cathode
E) none of the above
12) Which of the following nuclides would be predicted to go through positron emission/ecapture?
I: ${ }^{67} \mathrm{Zn}$
II: ${ }^{115}$ Sn
III: ${ }^{184} \mathrm{~W}$
IV: ${ }^{229} \mathrm{Th}$
A) Only I
B) Only II
C) I and III
D) II and IV
E) I, II, and III
13) What is the name of the molecule on the right?
A) 1,1,1-trimethyl-3-propene
B) 1,1,1-trimethyl-3-butene
C) 2,2-dimethyl-4-butane
D) 3,3-dimethyl-1-butene

E) 2,2-dimethyl-4-pentane
F) 4,4-dimethyl-1-pentene
14) How many of the following is/are named correctly?

1-methyl-2-bromocyclohexane

1,1,2-trimethylpentane

3,4,7-trimethyloctane
(1) Zero
(2) One (3) Two
(4) Three
15) Given the following reaction, which of the following is true:

$$
\mathrm{HSO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{SO}_{3}^{2-}
$$

A) The desired buffer pH should be $\pm 1 \mathrm{pH}$ unit from the pH of $\mathrm{H}_{2} \mathrm{SO}_{3}$
B) Incoming strong acid like HCl will be consumed by reacting with $\mathrm{SO}_{3}{ }^{2-}$
C) One possible way to prepare this buffer would be a calculated mixture of $\mathrm{SO}_{3}{ }^{2-}$ and NaOH
D) One possible way to prepare this buffer would be a calculated mixture of $\mathrm{HSO}_{3}{ }^{-}$and HCl
E) The optimal buffer will exhibit a ratio of $\left[\mathrm{A}^{2-} / \mathrm{HA}^{-}\right]$either greater than 10 or less than 0.10
16) Which of the following can exhibit cis-trans isomerism?

A) Only I
B) Only IV
C) I and II
D) III and IV
E) II and III

