1) The equilibrium constant K_c for forming Nitrogen monoxide gas from its elements is 1.0×10^{-5} at
1500K. If 0.80 mol of N_2 and 0.20 mol of O_2 were placed in a 1L flask, what is the equilibrium
concentration of NO?

- A) 6.32x10⁻⁴ M
- B) 1.26x10⁻³ M
- C) 3.16x10⁻⁴ M
- D) 8.94x10⁻⁴ M
- E) 1.79x10⁻³ M

2) K_c for the reaction $C_2 + D_2 \leftrightarrow$ 2CD is 2.0 at 600°C. 0.50 mol of each reactant are put in a 2L flask, predict the percent yield of CD at 600°C.

3) For which of the following reactions does $K_c = K_p$ at 25°C?

I: 3 A(s) + 5 B(g)
$$\rightleftharpoons$$
 3 AB(g) + B₂ (g), Δ H = 30 J

II: 2 C(g) + 2 D(g)
$$\rightleftharpoons$$
 4 CD(g), Δ H = -15 J

III: 2
$$Y(s) + E_2Y(g) \rightleftharpoons YE(g) + Y_2(g) + E(g)$$
, $\Delta H = 0 J$

- A) I only
- B) II only
- C) III only
- D) I and II only
- E) II and III only

4) Sodium-24 is a radioactive isotope that decays via first order kinetics and has a half-life of 15 hours. What fraction of an original sample of sodium-24 will decompose in 3 days?

5) Given the overall reaction $2H_2 + 2NO \rightarrow 2H_2O + N_2$ and the following mechanism:

Step 1: NO + NO \rightleftharpoons N₂O₂ (fast)

Step 2: $N_2O_2 + H_2 \rightarrow H_2O + N_2O$ (slow)

Step 3: $N_2O + H_2 \rightarrow N_2 + H_2O$ (fast)

Which of the following is/are true?

I: The rate law for the overall reaction is Rate = $k[N_2O_2][H_2]$

II: The absolute value of the rate of change of H_2 is $\frac{1}{2}$ the rate of change of N_2

III: The rate of the reaction is dependent only on H_2

A) Only I B) Only II C) II and III D) I and II E) None

6) Draw all t	he structural	isomers of C	₅ H ₁₂ .	
	reaction for the fo			id: $HA+ H_2O \rightleftharpoons NaA + H_3O^+$, which would
I: Adding 0.1	M NaOH to the b	uffer II: Adding	0.1 M HCl to t	he buffer
A) I only	B) II only	C) both	D) none	
0) 0 1 1 .				51100 - 1 - 1 - 1 - 1 - 1
		20 M Na₂CO₃ s	olution. K _a of	f HCO ₃ - is 4.8x10 ⁻¹¹
A) 8.4				
B) 2.1 C) 5.5				
D) 11.				
E) 9.6	2			

9) A 1.00g piece of chalk containing CaCO $_3$ (and other materials) was placed in 500. mL of hydrochloric acid solution with an initial pH of 1.00. After all of the CaCO $_3$ reacts with the HCl (forming CO $_2$ gas, H $_2$ O, Ca $^{2+}$, and Cl $^-$), the final pH is 1.19. About what mass percent of the chalk was CaCO $_3$?
10) Hypobromous acid is a commonly used disinfectant in swimming pools. At 25°C HBrO dissociates in water with a $K_a = 2.3 \times 10^{-9}$. Is this dissociation a spontaneous process when $[H_3O^+] = 6.0 \times 10^{-4}$ M, $[BrO^-] = 0.10$ M, and $[HBrO] = 0.20$ M?
A) Yes, because $\Delta G > 0$ B) No, because $\Delta G > 0$ C) Yes, because $\Delta G < 0$ D) No, because $\Delta G < 0$

11) What is the value for the standard free energy of the following reaction:

- A) +432.3 kJ/mol
 - B) -432.3 kJ/mol
- C) +216.1 kJ/mol
- D) -216.1 kJ/mol

12) A hydrogen fuel cell operates with the following half reactions:

Anode: $H_{2(g)} \rightarrow 2H^+ + 2e^-$

Cathode: $O_{2(g)} + 4e^{-} + 4H^{+} \rightarrow 2H_{2}O_{(I)}$

If the initial P_{02} is 4 atm, what initial P_{H2} is required for the cell to generate a voltage of 1.25V?

13) The magnetic moment of an inorganic complex represents the number of unpaired electrons
present in its d-orbital splitting configuration. A complex $[MCl_6]^{4-}$ has a magnetic moment of around 3.
Which two elements in the 3d block could be "M"?

- A) V and Ni
- B) V and Co
- C) Sc and Ni
- D) Sc and Co

14) Rank the following in order of increasing magnetism. I: $[Mn(NO_2)_6]^{1-}$ II: $[Fe(en)_3]^{2+}$ III: $[CoCl_3F_3]^{3-}$

- A) I < II < III
- B) I < III < II
- C) || < ||| < |
- D) || < | < ||
- E) | | | < | < | |

15) What is the binding energy per nucleon of fluorine?
16) Which of the following would buffer systems would you most optimally choose to create a buffer of pH = 6.50 ? The Ka of H ₂ B = $1x10^{-5}$ and the ka of HB ⁻ = $1x10^{-7}$.
A) B^{2-}/H_2B B) B^{2-}/HB^{-} C) HB^{-}/H_2B D) HB^{-}/HB_2
E) B ²⁻ /HB ₂

17) Calculate the molar solubility of Ag_2CO_3 at 25°C. Ksp = 8.1×10^{-12}
18) Which of the following reactions would you expect to be spontaneous at high temperatures but nonspontaneous at low temperatures?
 A) An exothermic reaction with S°_{reaction} < 0 B) An endothermic reaction with S°_{reaction} < 0 C) An exothermic reaction with S°_{reaction} > 0 D) An endothermic reaction with S°_{reaction} > 0 E) Such a reaction does not exist
19) Is MnO_4^- or Br_2 a stronger oxidizing agent? Explain.
19) Is MnO_4^- or Br_2 a stronger oxidizing agent? Explain.

20) True or False: CaO is a more basic oxide than Rb₂O.
21) Consider the complex trans-[Co(CH ₃ NH ₂) ₄ Cl ₂]NO ₃ , what is the coordination number and the
oxidation state, respectively, of the transition metal ion?