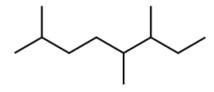
- What is the most common means for a heavy, unstable nucleus to become stable?
 Alpha decay heavy and unstable refers to elements with an atomic number greater than 83
- 2) Which of the following have the same net effect?
 - A) Gamma emission and positron emission
 - B) Alpha decay and beta decay
 - C) Electron capture and positron emission
 - D) Beta decay and electron capture
 - E) Alpha decay and positron emission
- 3) Which of the following nuclides would you predict to be stable and which radioactive: (a) 18 $_{10}$ Ne; (b) 32 $_{16}$ S; (c) 236 $_{90}$ Th; (d) 123 $_{56}$ Ba? Give a brief explanation for your answer to be eligible to partial credit.
 - a) Radioactive -> N/Z = 0.8, only hydrogen and helium are stable with N/Z < 1
 - b) stable \rightarrow N/Z = 1
 - c) radioactive -> Z > 83 automatically undergoes alpha decay
 - d)radioactive -> N/Z = 1.20. This doesn't give us enough information, so look at the atomic mass. 123 >> 137, so positron emission/ e- capture
- 4) Use the <u>atomic mass</u> of the element to predict the mode(s) of decay of the following radioactive nuclides: (a) ¹² ₅B; (b) ²³⁴ ₉₂U; (c) ⁸¹ ₃₃As; (d) ¹²⁷ ₅₇La
 - a) Periodic table mass = 10.81, so this isotope is too heavy. Too many neutrons = beta decay
 - b) Z > 83, alpha decay
 - c) Periodic table mass = 74.92, so this isotope is too heavy. Too many neutrons = beta decay
 - d) Periodic table mass = 138.91, so this isotope is too light. Too few neutrons = positron emission or e- capture
- 5) True or false: All radioactive emissions cause ionization which can form free radicals.

 True
- 6) Why is it assumed that mass is conserved for chemical reactions?
 - A) Because mass cannot be created or destroyed
 - B) Because mass and energy have no relation to one another
 - C) Because the chemical reactions we study are only theoretical
 - D) Because the change in energy from breaking and forming bonds is so small
 - E) It is not assumed that mass is conserved for chemical reactions
- 7) ²³⁷Np is the parent nuclide of a decay series that starts with alpha emission, followed by betadecay, and then two more alpha emissions. Write a balanced nuclear equation for each step.
 - Step 1: Np becomes Pa
 - Step 2: Pa becomes U
 - Step 3: U becomes Th

Step 4: Th becomes Ra


- 8) What is the specific activity (in Ci/g) if 1.65 mg of an isotope emits 1.56x10⁶ alpha particles per second? Show your work to be eligible for partial credit. 2.56x10⁻² Ci/g
- 9) If 1.00x10⁻¹² mol of ¹³⁵Cs emits 1.39x10⁵ beta⁻ particles in 1.00 yr, what is the decay constant? Include units with your answer and show your work to be eligible for partial credit. 2.31x10⁻⁷ yr⁻¹
- 10) The isotope ²¹²₈₃Bi has a half-life of 1.01 yr. What mass (in mg) of a 2.00-mg sample will remain after 3.75x10³ h? Show your work to be eligible for partial credit. 1.49 mg
- 11) Which compounds exhibit geometric isomerism? Draw and name the two isomers in each case: (a) propene (b) 3-hexene (c) 1,1-dichloroethene
 - a) No geometric isomers because at least one of the carbons in the double bond has two of the same substituents
 - b) Cis-3-hexene and trans-3-hexene
 - c) No geometric isomers because at least one of the carbons in the double bond has two of the same substituents
- 12) How many of the following is/are named correctly?

1-methyl-2-bromocyclohexane

1,1,2-trimethylpentane

3,4,7-trimethyloctane

- A) Zero
- B) One
- C) Two
- D) Three
- 13) Determine the type of each of the following reactions:

Determine the type of each of the following reaction (a)
$$CH_3$$
— CH_2 — CH — CH_3 \xrightarrow{NaOH}

$$CH_3$$
— CH = CH — CH_3 + $NaBr$ + H_2O

(b)
$$CH_3$$
— CH = CH — CH_2 — CH_3 + H_2 \xrightarrow{Pt} CH_3 — CH_2 — CH_2 — CH_2 — CH_3

- A) Hydrogenation; Addition
- B) Addition; Elimination
- C) Substitution; Elimination

D) Elimination; Addition

- E) Hydrogenation; Substitution
- 14) Based on the number of bonds and the nature of the bonded atoms, state whether each of the following changes is an oxidation or a reduction:

(a)
$$-\overset{\mid}{\mathsf{C}}$$
 OH becomes $-\overset{\mid}{\mathsf{C}}$ =0

(b)
$$-CH_2$$
 -OH becomes $=CH_2$

Oxidized, reduced, oxidized

15) Draw the following functional groups: (a) ketone (b) amide (c) aldehyde (d) amine

