1a) For the following reaction at equilibrium, which of the following disturbances will increase product yield?

 $2H_2S(g) + O_2(g) \rightleftharpoons 2S(s) + 2H_2O(g)$

$$\Delta H^{\circ}_{rxn}$$
 = +30 kJ

$$K_p = 2.6 \times 10^{-9}$$
 at 25°C

I: Increase temperature

II: Increase volume

III: decreasing moles of O₂

- A) I only
- B) II only
- C) I and III
- D) II and III
- E) I, II, and III
- 1b) Fill in the blank

The principle used in part 1a to determine the shift in an equilibrium reaction is called ______

2) Consider the following overall reaction and its rate law: $2 A + B \rightarrow 2 C$, Rate = k [A][B]. Which of the following mechanisms can be considered a possible mechanism for the reaction?

I: $2 A + B \rightarrow 2 C$ (one step)

II:
$$A + B \rightleftharpoons M$$
 (slow)

III:
$$A + B \rightleftharpoons M$$
 (fast)

$$M+A \rightarrow 2C$$
 (fast)

$$M+A \rightarrow 2C (slow)$$

- A) Only I
- B) Only II
- C) I and III
- D) II and III
- E) I, II, and III

Use the following two reactions for questions 3-4:

$$A_{(s)} + B_{(g)} \rightarrow C_{(g)} + 2D_{(g)}$$
 $K_p = 1.0 \times 10^{-2}$

$$2D_{(g)} \rightarrow E_{(g)} + F_{(g)} \hspace{1cm} K_p = 1 \times 10^1 \label{eq:Kp}$$

3) What is the K_p of the following reaction? Be sure to show all your work to be eligible for partial credit.

$$2\mathsf{A}_{(s)} + 2\mathsf{B}_{(g)} \rightarrow 2\mathsf{C}_{(g)} + 2\mathsf{D}_{(g)} + \mathsf{E}_{(g)} + \mathsf{F}_{(g)}$$

- 4) If excess A and 10.0 atm of B react according to reaction 1, what would be the predicted partial pressure of D at equilibrium?A) 0.37 atmB) 0.58 atm
- C) 0.29 atmD) 0.16 atm
- E) 0.32 atm
- 5) Which of the following statements is *false*? Then, correct the false statement.
- A) Increasing the temperature increases the rate of a reaction
- B) Increasing the temperature increases the rate constant of a reaction
- C) The activation energy is the energy difference between reactants and products
- D) Lowering the activation energy increases the rate of a reaction.

- 6) The decomposition of N_2O_4 into NO_2 has $K_p = 2$. Some N_2O_4 is placed into an empty container, and the partial pressure of NO_2 at equilibrium is measured to be 0.2 atm. What was the initial pressure in the container prior to decomposition?
- A) 0.12 atm
- B) 0.10 atm
- C) 0.20 atm
- D) 0.22 atm
- E) 0.30 atm

Consider the following reactions when answering questions 7-8.

Reaction 1:
$$2NO(g) + Br_2(g) \rightleftharpoons 2NOBr(g)$$

$$\Delta H^{\circ}_{rxn} = -16 \text{ kJ}$$
 $K_p = 27 \text{ at } 25^{\circ}\text{C}$

Reaction 2:
$$CO_2(g) \rightleftharpoons C(s) + O_2(g)$$

$$\Delta H^{\circ}_{rxn} = +100 \text{ kJ}$$

$$K_p = 2.6 \times 10^{-9}$$
 at 25°C

- 7) For which reaction(s) above would an increase in reaction vessel volume at constant temperature result in an increase in product yield?
- A) Neither Reaction
- B) Reaction 1 only
- C) Reaction 2 only
- D) Both reactions
- 8) For which reaction(s) above would an increase in temperature at constant volume result in an increase in product yield?
- A) Neither Reaction
- B) Reaction 1 only
- C) Reaction 2 only
- D) Both reactions

- 9) The equilibrium constant K_c is found to be 1.05 for the decomposition of phosphorus pentachloride to phosphorus trichloride and molecular chlorine at 250 °C. If the initial concentrations of PCl_5 , PCl_3 , and Cl_2 are 0 M, 3 M, and 4 M, respectively, what is the equilibrium concentration of PCl_3 at 250 °C? $PCl_{5(g)} \rightleftarrows PCl_{3(g)} + Cl_{2(g)}$. Show your work.
- 10) Sodium-24 is a radioactive isotope that decays via first order kinetics and has a half-life of 15 hours. What fraction of an original sample of sodium-24 will decompose in 3 days?
- A) 4%
- B) 13%
- C) 50%
- D) 87%
- E) 96%

11) For the following reaction, given that a 1L flask initially contains 2 moles S_8 , 2 moles S_6 , and 2 moles F_2 , will Q or k be larger? Will the reaction shift towards the products or the reactants? Show your work.

$$1/8 S_8(s) + 3 F_2(g) \rightleftharpoons SF_6(g) K_c = 0.425$$

12) Given the overall reaction $2H_2 + 2NO \rightarrow 2H_2O + N_2$ and the following mechanism:

Step 1: NO + NO \rightleftharpoons N₂O₂ (fast)

Step 2: $N_2O_2 + H_2 \rightarrow H_2O + N_2O$ (slow)

Step 3: $N_2O + H_2 \rightarrow N_2 + H_2O$ (fast)

Which of the following is/are true?

I: The rate law for the overall reaction is Rate = $k[N_2O_2][H_2]$

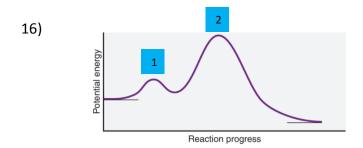
II: The absolute value of the rate of change of H_2 is $\frac{1}{2}$ the rate of change of N_2

III: The rate of the reaction is equal to the rate of H₂

- A) Only I
- B) Only II
- C) Only III
- D) I, II, and III
- E) None

13) Given the following experimental data, find the rate law and the rate constant. Show all work to be eligible for partial credit.

$$4A_{(g)} + 3B_{(g)} \rightarrow 2C_{(g)}$$


Experiment	Initial [A] (M)	Initial [B] (M)	Initial Rate (M/min)
1	0.100	0.100	5.00
2	0.300	0.100	45.0
3	0.100	0.200	10.0
4	0.300	0.200	90.0

14) The rate constant of a reaction is $4.7x10^{-3}$ s⁻¹ at 25°C, and the activation energy is 33.6 kJ/mol. What is k at 75°C?

15) In a study of nitrosyl halides, a chemist proposes the following mechanism for the synthesis of nitrosyl bromide:

 $NO_{(g)} + Br_{2(g)} -> NOBr_{2(g)}$ [fast, equilibrium] $NOBr_{2(g)} + NO_{(g)} -> 2NOBr_{(g)}$ [slow]

If the rate law is rate=k[NO]²[Br₂], is the proposed mechanism valid? Show all your work.

- a) Free response: How many elementary steps are in the reaction mechanism?
- b) Which step is rate limiting? 1 or 2
- c) Is the overall reaction exothermic or endothermic? Exothermic/Endothermic
- 17) What is the k_b of a conjugate base if the k_a of the acid is $7.1x10^{\text{--}4}\,\text{?}$ Show your work.