Different professors are covering different material in their classes. Therefore, the questions in this review are separated by chapter.

Chapter 16: Kinetics, Rate Laws

16.1 Cyclobutane decomposes in a first order reaction shown below.

$$\mathsf{C_4H_8}_{(g)} \rightleftharpoons 2\mathsf{C_2H_4}_{(g)}$$

Given that the initial concentration of C_4H_8 is 5M and the final concentration is 0.06M after 0.05 seconds, what is the rate constant and the expected rate law?

a.
$$65 \text{ s}^{-1}$$
; rate = $k[C_2H_4]^2$

b.
$$88 \text{ s}^{-1}$$
; rate = $k[C_4H_8]$

c.
$$92 \text{ s}^{-1}$$
; rate = $k[C_4H_8]$

d.
$$88 \text{ s}^{-1}$$
; rate = $k[C_2H_4]^2$

e.
$$65 \text{ s}^{-1}$$
; rate = $k[C_4H_8]$

f.
$$92 \text{ s}^{-1}$$
; rate = $k[C_2H_4]^2$

Integrated Rate Law: First Order
$$\Rightarrow \ln \frac{(A)_o}{(A)_t} = Rt$$
, rate = $k[A]$

$$\begin{array}{ccc}
(\mu H_{a(g)} \stackrel{\sim}{\longrightarrow} 2 C_2 H_{4} G) & \text{rate} = k[C_4 H_8]_o \\
(A)_o = (C_4 H_8]_o = 5M & t = 0.05 s
\\
(A)_t = (C_4 H_8]_t = 0.06M$$

$$\begin{array}{cccc}
(A)_t = (C_4 H_8]_t = 0.06M
\end{array}$$

$$\begin{array}{ccccc}
A & t = (C_4 H_8)_t = 0.06M
\end{array}$$

$$\begin{array}{ccccc}
A & t = (C_4 H_8)_t = 0.06M
\end{array}$$

$$\begin{array}{ccccc}
A & t = (C_4 H_8)_t = 0.06M
\end{array}$$

$$\begin{array}{ccccc}
A & t = (C_4 H_8)_t = 0.06M
\end{array}$$

$$\begin{array}{ccccc}
A & t = (C_4 H_8)_t = 0.06M
\end{array}$$

$$\begin{array}{cccccc}
A & t = (C_4 H_8)_t = 0.06M
\end{array}$$

$$\begin{array}{ccccccc}
A & t = (C_4 H_8)_t = 0.06M
\end{array}$$

$$\begin{array}{ccccccccc}
A & t = (C_4 H_8)_t = 0.06M
\end{array}$$

16.2 The decomposition of hydrogen bromide is shown below.

$$2\mathsf{HBr}_{(g)} \rightleftarrows \mathsf{H}_{2(g)} + \mathsf{Br}_{2(g)}$$

At 600 K, the rate constant is 1.50×10^{-5} L/mol s. At 800 K, the rate constant is 6.80×10^{-3} L/mol s. What is the activation energy for this reaction?

a.
$$1.82 \times 10^{2} \text{ kJ/mol}$$

b. $1.39 \times 10^{2} \text{ kJ/mol}$
c. $1.58 \times 10^{2} \text{ kJ/mol}$
d. $\frac{1.22 \times 10^{2} \text{ kJ/mol}}{2.02 \times 10^{2} \text{ kJ/mol}}$
e. $\frac{1.22 \times 10^{2} \text{ kJ/mol}}{2.02 \times 10^{2} \text{ kJ/mol}}$

T. = 600 K,
$$R_1 = 1.50 \times 10^{-5} L/\text{mol·s}$$

T₂ = 800 K, $R_2 = 6.80 \times 10^{-3} L/\text{mol·s}$

(R) $R_1 = \frac{L_2}{R_1} = \frac{E_1}{R_2} \left(\frac{1}{T_1} - \frac{1}{T_2} \right) \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$

($\frac{1}{T_1} - \frac{1}{T_2}$)

($\frac{1}{T_1} - \frac{1}{T_2}$)

$$E_{\alpha} = R \ln \frac{A_{2}}{A_{1}} \left(\frac{1}{T_{1}} - \frac{1}{T_{2}} \right)^{-1}$$

$$R = 8.314 \text{ J/mol K}$$

$$E_{\alpha} = \left(8.314 \text{ J/mol K} \right) \left[\ln \frac{(6.30 \times 10^{-3} \text{ L/mol S})}{(1.50 \times 10^{-5} \text{ L/mol S})} \right] \left(\frac{1}{\text{cook}} - \frac{1}{800 \text{K}} \right)^{-1}$$

16.3 Using the information in the previous question (16.2), determine what temperature should be used if you wanted the rate to be three times as fast as it is at 600K?

- a. 576 K
- b. 582 K
- c. <u>626 K</u>
- d. 654 K
- e. 730 K

What temperature for
$$\frac{3+imes}{loo}$$
 of $\frac{4.50 \times 10^{-5} \text{ L/mol s}}{loo}$ $\frac{1.22 \times 10^{5} \text{ J/mol}}{loo}$ $\frac{1.22 \times 10^{5} \text{ J/mol}}{l$

16.4 A fictional reaction is shown below with its rate law.

$$2A + B + C \rightarrow 3D$$
, rate = $k[A]^2[B][C]$

Which of the following mechanisms can be considered possible mechanisms for this reaction and rate law?

- a. I only
- b. II only
- c. III only
- d. I and II
- e. I, and III
- f. I, II, and III

$$X + A + C \Rightarrow 30$$
 (show)

II. $2A + B + C \Rightarrow 30$ One step rate $-[A:]^2[B][C]$

Chapter 17: Chemical Equilibrium, K & Q, Le Chatelier's Principle

17.1 Using Le Chatelier's Principle, match the correct shift for the given change.

Change		Shift		
a)	Increase in Concentration of X	I.	No shift	
b)	Decrease in Concentration of X	II.	Away from heat	
c)	Increase in Pressure	III.	Away from substance X	
d)	Decrease in Pressure	IV.	Toward Heat	
e)	Increase in Temperature	V.	Towards fewer moles of gas	
f)	Decrease in Temperature	VI.	Towards substance X	
g)	Catalyst	VII.	Towards more moles of gas	

17.2 Ammonia is created on an industrial scale using the Haber-Bosch process shown below.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$
 $\Delta H = -92.4 \text{ kJ} * \text{mol}^{-1}$

Predict the shift (left, right, or none) for each given change.

	Change	Shift	
	Increase [NH ₃]	Left	away from NH3
$N_2 + 3H_2 \rightarrow 2NH_3 + \Delta H$	Decrease [N ₂]	Left	- toward Nz
1/2+3h2 /2/01/3 / 311	Decrease [NH ₃]	Right	toward NH3
	Increase Pressure	Right	toward fever moles of ges exothermic > away from heat
	Increase Temperature	Left	exothermic > away from heat
	Catalyst	No shift	
	Increase [H ₂]	Right	anaz from Hz

17.3 A fictional reaction is shown below.

$$A_{(g)} + B_{(g)} \rightleftharpoons 3C_{(g)}$$
 $\Delta H = +36 \text{ kJ mol}^{-1}$

To favor the production of the product (C), under what conditions should this reaction be carried out?

- a. High pressure, Low temperature
- b. High pressure, High temperature
- c. Low pressure, High temperature
- d. Low pressure, Low temperature

17.4 Calculate Kc given the following reaction.

$$PCl_{3(g)} + Cl_{2(g)} \rightleftharpoons PCl_{5(g)}$$
 $K_p = 4.07 \times 10^{-1} \text{ (at 226.85°C)}$

If the Qc was 20.5, is the reaction at equilibrium? Or will it proceed to the left or to the right?

- a. Kc=16.7, proceed left until Qc=Kc
- b. Kc=38.5, proceed right until Qc=Kc
- c. Kc=20.5, the reaction is at equilibrium
- d. Kc=30.2, proceed right until Qc=Kc

226.85
$$C + 273.15 = 500K$$

| mol gas - (| mol gas + | mol gas) = |-2 = -| Δn gas
PCI5 PCI_3 CI_2

$$K_{p} = K_{c} (RT)^{\Delta n_{gas}}$$

$$K_{p} = 4.07 \times 10^{-1}$$

$$R = 0.082 | \frac{q_{+m}L}{m_{0}!K}$$

$$T = 226.85 c + 273.17 = 500 K$$

$$\Delta n = 1 - 2 = -1$$

$$K_{p} = K_{c} (RT)^{\Delta n_{gas}}$$

$$R_{T}^{\Delta n_{gas}}$$

$$R_{T}^{\Delta n_{gas}}$$

$$K_{p} = K_{c} (RT)^{\Delta n_{gas}}$$

$$R_{T}^{\Delta n_{gas}}$$

$$R_{T}^{\Delta n_{gas}}$$

$$K_{p} = K_{c} (RT)^{\Delta n_{gas}}$$

$$R_{T}^{\Delta n_{gas}}$$

$$R_{T}^{\Delta n_{gas}}$$

$$K_{p} = K_{c} (RT)^{\Delta n_{gas}}$$

$$R_{T}^{\Delta n_{gas}}$$

$$R_{T}^{\Delta n_{gas}}$$

$$K_{p} = K_{c} (RT)^{\Delta n_{gas}}$$

$$R_{T}^{\Delta n_{gas}}$$

$$R_{T}^{\Delta n_{gas}}$$

$$K_{p} = K_{c} (RT)^{\Delta n_{gas}}$$

$$R_{T}^{\Delta n_{gas}}$$

17.5 The decomposition of phosgene is shown in the reaction below.

$$\text{COCl}_{2(g)} \rightleftharpoons \text{CO}_{(g)} + \text{Cl}_{2(g)} \qquad \text{K}_{\text{c}} = 6.3 \times 10^{-4} \text{ (at 500K)}$$

Calculate the equilibrium partial pressures of $COCl_2$, CO, and Cl_2 when the initial partial pressure of $COCl_2$ is 0.28 atm.

- a. COCl₂=0.5 atm, CO=0.24 atm, Cl₂=0.014 atm
- b. COCl₂=0.071 atm, CO=Cl₂=0.85 atm
- c. COCl₂=0.26 atm, CO= Cl₂=0.024 atm
- d. $COCl_2=0.29$ atm, CO=0.21 atm, $Cl_2=0.79$ atm
- e. COCl₂=0.21 atm, CO= Cl₂=0.073 atm

$$COC_1 \rightleftharpoons CO+C_1$$

 $londges$ $2mlges$
 $\Delta n = 2-l = 1$

$$Q_{p} = \frac{P_{co} P_{cl_{2}}}{P_{cocl_{2}}}$$

$$= \frac{COCl_{2}(y)}{P_{cocl_{2}}} = \frac{CO(y) + Cl_{2}(y)}{O.28}$$

$$= \frac{OCl_{2}(y)}{O.28} = \frac{O}{O} + X$$

$$= \frac{COCl_{2}(y)}{VX} = \frac{O}{VX} = \frac{O}{V$$

$$K_{p} = 0.0288645 = \frac{R_{co}R_{cl_{2}}}{R_{cocl_{2}}} = \frac{\chi^{2}}{0.28 - \chi}$$

$$0.0258615(0.28-x)=x^{2}$$

$$x^{2}+0.0758615x-0.00724122=0$$

$$\chi = -b + \sqrt{b^2 - 4ac}$$

$$X = 0.07311$$

$$COCI_2 = 0.28 - 0.07314 = 0.20686 \approx 0.21 \text{ atm}$$

$$CO = Cl_2 = 0.073141 \approx 0.073 \text{ atm}$$

Chapter 18: Acid-Base Equilibrium (Not all professors are covering Chapter 18)

18.1 Calculate the $[H_3O^+]$, pH, $[OH^-]$, and pOH, of 0.5 M of H_2SO_4 .

b.
$$[H_3O^+]=0.25M$$
, $pH=0.60$, $[OH^-]=5\times10^{-10}M$, $pOH=10.5$

c.
$$[H_3O^+]=0.15 \text{ M}$$
, $pH=0.90$, $[OH^-]=0.27 \text{ M}$, and $pOH=13.2$

d.
$$[H_3O^+]=0.90$$
 M, $pH=3.1$, $[OH^-]=8.1\times10^{-5}$ M, and $pOH=10.9$

0.5 M H₂SO₄
$$\Rightarrow$$
 Strong acid so completely dissociates

(a) $[H_3O^{\dagger}] = 0.5M$

PH = $-\log [CH_3O^{\dagger}] = -\log [0.5] = 0.30$
 $[OH^{-}] = \frac{K\omega}{CH_3O^{\dagger}} = \frac{|X10^{-14}|}{0.5} = \frac{2X10^{-14}M}{0.5}$

POH = $-\log [OH^{-}] = -\log (2X10^{-14}] = 13.70$

OR POH = $[H-pH] = [H-0.3] = 13.70$

18.2 Define each of the following and provide an example.

A Brønsted-Lowry acid is a proton donor. An example is HCl.

A Brønsted-Lowry base is a proton acceptor. An example is NH₃.

A Lewis acid is an electron pair acceptor. An example is BF₃.

A Lewis base is an <u>electron pair donor</u>. An example is $\underline{\text{H}_2\text{O}}$.

 18.3 Methylamine (CH₃NH₂) has a K_b of 4.4×10^{-4} . What is the pH of 5 M CH₃NH₂?

Initial
$$CH_3NH_2$$
 (ag) $+H_2O(x) \rightleftharpoons CH_3NH_3^+$ (ag) $+OH^-$ (ag) $+X$

Change $-X$

Equilibrium $S-X$
 X
 X

Assume
$$5M-X \approx 5M$$

$$K_{b} = \frac{[cH_{3}\nu H_{3}^{+}][OH^{-}]}{[cH_{3}\nu H_{2}]} = H.HX10^{-4} \approx \frac{X^{2}}{5} \implies X = [OH^{-}] \approx 0.04690$$

$$Check assumption: 0.04690 \times 0.042 < 52 \text{ Vok}$$

$$pH? \rightarrow [H_30^4] = \frac{K_U}{C0H^2} = \frac{1 \times 10^{-14}}{0.04690} = 2.13 \times 10^{-13} M$$

$$pH = -log(2.13 \times 10^{-13}) = 12.67$$

18.4 Potassium propionate (KCH₃CH₂COO) is a food preservative that is most commonly used as an antimicrobial agent in bread. What is the pH of 0.38 M KCH₃CH₂COO at 298K? The K_a of propionic acid is 1.34×10^{-5} .

a. 10.13	CH3 (H2 (00 - 194) + H20(1) = CH3 (H2 (00) H +0 H -							
b. 8.34	Initial	0.38 -X	3	6 +x	0 +x			
c. 9.86	Change	0.04	+	1				
<u>d. 9.23</u>	Equilibrium	0.38 -X	1 7	×	\ ^			

$$K_{b} = \frac{K_{w}}{K_{a}} = \frac{|x_{10}|^{1/4}}{1.34x_{10}} = 7.46269x_{10}^{-10} \approx \frac{x^{2}}{0.38} \Rightarrow x = 1.68x_{10}^{-5} = 0.0042 < 5\%$$

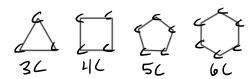
$$K_{b} = \frac{[HA][OH]}{[A]} = 7.46269x_{10}^{-10} \approx \frac{x^{2}}{0.38} \Rightarrow x = 1.68x_{10}^{-5} = 0.0042 < 5\%$$
Check assumption: $\frac{1.7x_{10}^{-5}}{0.38} = 0.0042 < 5\%$

18.5 Which of the following is a potential Lewis acid?

a. Cl -> lewis Base

b. OH -> Lew's Buse

c. BCl₃


d. NH4+ -> (qunot accept an e-

Lewis and delectron pair acceptor

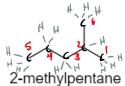
Chapter 15: Organic Chemistry (Not all professors are covering Chapter 15)

15.1 What are the names of these four structures, in order (left to right)?

| = meth - | = eth - |

- a. Cyclohexane, Cyclobutane, Cycloheptane, Cyclooctane
- b. Cyclopropane, Cyclobutane, Cyclopentane, Cyclohexane
- c. Cyclopropane, Cyclooctane, Cyclononane, Cyclohexane
- d. Cyclobutane, Cyclopropane, Cyclohexane, Cyclononane
- e. Cyclodecane, Cyclononane, Cyclopropane, Cyclohexane

= meth-= eth-= prop-= but-5= pent-(= hex-= heptq= nona-


15.2 Draw an example of each functional group.

- a. Alkane \sim hexane R-C-C-R
- b. Alkene 2-hexene R C = C R
- c. Alkyne 2-hexyne R-C=C-R
- d. Alcohol Propanol R-0H
- e. Ether dipropylether R-o-R
- g. Aldehyde butyraldehyde R
- h. Ketone acetone/2-propanone RAR
- i. Carboxylic Acid propionic acid/methyl acetic acid
- j. Ester ethyl propanoate $R \neq H$
- k. Amine N-methyl-1-propanamine R NH

 $15.3~C_6H_{14}$ has 5 different constitutional isomers. Draw each and name according to IUPAC naming rules.

a.

b. 2

C.

d.

2,3-dimethylbutane

e.