1a) For the following reaction at equilibrium, which of the following disturbances will increase product yield?

 $2H_2S(g) + O_2(g) \rightleftharpoons 2S(s) + 2H_2O(g),$ $\Delta H^\circ_{rxn} = +30 \text{ kJ}$ $K_p = 2.6 \times 10^{-9} \text{ at } 25^\circ \text{C}$ I: Increase temperatureII: Increase volumeIII: decreasing moles of O_2 A)I only

- B) II only
- C) Land III
- D) II and III
- E) I, II, and III

1b) Fill in the blank

The principle used in part 1a to determine the shift in an equilibrium reaction is called ______

Answer: Le Chatelier's

2) Consider the following overall reaction and its rate law: $2 A + B \rightarrow 2 C$, Rate = k [A][B]. Which of the following mechanisms can be considered a possible mechanism for the reaction?

I: 2 A + B → 2 C (one step)	II: A + B ⇄ M (slow)	III: A + B ≓ M (fast)	
	M+ A → 2 C (fast)	M+ A \rightarrow 2 C (slow)	

A) Only I <mark>B)</mark> Only II C) I and III

D) II and III

E) I, II, and III

Use the following two reactions for questions 3-4: $\begin{array}{l} A_{(s)}+B_{(g)} \rightarrow C_{(g)}+2D_{(g)} \quad K_p = 1.0 \times 10^{-2} \\ 2D_{(g)} \rightarrow E_{(g)}+F_{(g)} \qquad K_p = 1 \times 10^1 \end{array}$

3) What is the K_p of the following reaction? Be sure to show all your work to be eligible for partial credit.

 $2A_{(s)} + 2B_{(g)} \rightarrow 2C_{(g)} + 2D_{(g)} + E_{(g)} + F_{(g)}$ $K_{p} = 1.0 \times 10^{-3}$

- 4) If excess A and 10.0 atm of B react according to reaction 1, what would be the predicted partial pressure of D at equilibrium?
- A) 0.37 atm
- <mark>B) 0.58 atm</mark>
- C) 0.29 atm
- D) 0.16 atm
- E) 0.32 atm

5) Which of the following statements is *false*? Then, correct the false statement.

A) Increasing the temperature increases the rate of a reaction

B) Increasing the temperature increases the rate constant of a reaction

C) The activation energy is the energy difference between reactants and products

D) Lowering the activation energy increases the rate of a reaction.

C is false because deltaH is the difference between the reactants and products

6) The decomposition of N_2O_4 into NO_2 has $K_p = 2$. Some N_2O_4 is placed into an empty container, and the partial pressure of NO_2 at equilibrium is measured to be 0.2 atm. What was the initial pressure in the container prior to decomposition?

- A) 0.12 atm B) 0.10 atm C) 0.20 atm D) 0.22 atm
- E) 0.30 atm

Consider the following reactions when answering questions 7-8.

Reaction 1: $2NO(g) + Br_2(g) \rightleftharpoons 2NOBr(g)$	$\Delta H^{\circ}_{rxn} = -16 \text{ kJ}$	K _p = 27 at 25°C
Reaction 2: $CO_2(g) \rightleftharpoons C(s) + O_2(g)$	ΔH° _{rxn} = +100	$K_p = 2.6 \times 10^{-9} \text{ at } 25^{\circ}\text{C}$

7) For which reaction(s) above would an increase in reaction vessel volume at constant temperature result in an increase in product yield?

A) Neither Reaction

- B) Reaction 1 only
- C) Reaction 2 only
- D) Both reactions

8) For which reaction(s) above would an increase in temperature at constant volume result in an increase in product yield?

- A) Neither Reaction
- B) Reaction 1 only
- C) Reaction 2 only
- D) Both reactions

9) The equilibrium constant K_c is found to be 1.05 for the decomposition of phosphorus pentachloride to phosphorus trichloride and molecular chlorine at 250 °C. If the initial concentrations of PCl₅, PCl₃, and Cl₂ are 0 M, 3 M, and 4 M, respectively, what is the equilibrium concentration of PCl₃ at 250 °C? $PCl_{5(g)} \rightleftharpoons PCl_{3(g)} + Cl_{2(g)}$. Show your work. PCl₃ = 1.02 M

10) Sodium-24 is a radioactive isotope that decays via first order kinetics and has a half-life of 15 hours. What fraction of an original sample of sodium-24 will decompose in 3 days?

A) 4% B) 13% C) 50% D) 87% E) <mark>96%</mark>

11) For the following reaction, given that a 1L flask initially contains 2 moles S_8 , 2 moles S_6 , and 2 moles F_2 , will Q or k be larger? Will the reaction shift towards the products or the reactants? Show your work.

 $1/8 S_8(s) + 3 F_2(g) \rightleftharpoons SF_6(g) K_c = 0.425$

Answer: K > Q, reaction will make more products

12) Given the overall reaction $2H_2 + 2NO \rightarrow 2H_2O + N_2$ and the following mechanism:

Step 1: NO + NO \rightleftharpoons N₂O₂ (fast)

Step 2: $N_2O_2 + H_2 \rightarrow H_2O + N_2O$ (slow) Step 3: $N_2O + H_2 \rightarrow N_2 + H_2O$ (fast)

Which of the following is/are true? I: The rate law for the overall reaction is Rate = $k[N_2O_2][H_2]$ II: The absolute value of the rate of change of H_2 is $\frac{1}{2}$ the rate of change of N_2

III: The rate of the reaction is equal to the rate of H_2

A) Only I B) Only II C) Only III D) I, II, and III E<mark>) None</mark>

13) Given the following experimental data, find the rate law and the rate constant. Show all work to be eligible for partial credit.

 $4A_{(g)} + 3B_{(g)} \rightarrow 2C_{(g)}$

Experiment	Initial [A] (M)	Initial [B] (M)	Initial Rate (M/min)
1	0.100	0.100	5.00
2	0.300	0.100	45.0
3	0.100	0.200	10.0
4	0.300	0.200	90.0

Rate=k[A]²[B] K = 5000 M⁻²min⁻¹

14) The rate constant of a reaction is $4.7 \times 10^{-3} \text{ s}^{-1}$ at 25°C, and the activation energy is 33.6 kJ/mol. What is k at 75°C? $K_2 = 3.29 \times 10^{-2}$

15) In a study of nitrosyl halides, a chemist proposes the following mechanism for the synthesis of nitrosyl bromide:

 $NO_{(g)} + Br_{2(g)} -> NOBr_{2(g)}$ [fast, equilibrium] $NOBr_{2(g)} + NO_{(g)} -> 2NOBr_{(g)}$ [slow]

If the rate law is rate= $k[NO]^{2}[Br_{2}]$, is the proposed mechanism valid? Show all your work.

Yes, the proposed mechanism is valid

- a) Free response: How many elementary steps are in the reaction mechanism? 2
- b) Which step is rate limiting? 1 or 2
- c) Is the overall reaction exothermic or endothermic?

Exothermic/Endothermic

17) What is the k_b of a conjugate base if the k_a of the acid is 7.1x10⁻⁴? Show your work. $K_b = 1.41x10^{-11}$