Spring 2024 CHM 2046 Exam 1 Review

The material covered in this review is from Chapters 16-19
 Different professors cover different material

Chapter 16: Kinetics

1. Ammonia is generated on an industrial scale using the Haber-Bosch process. The reaction is shown below:

$$
\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}
$$

Find the rate law, individual, and overall reaction orders and the average value of k for the reaction.

Experiment	Initial rate $\left(\mathrm{mol} / \mathrm{L}^{*} \mathrm{~s}\right)$	Initial $\left[\mathrm{N}_{2}\right](\mathrm{mol} / \mathrm{L})$	Initial $\left[\mathrm{H}_{2}\right](\mathrm{mol} / \mathrm{L})$
1	1.9×10^{-12}	0.0113	0.0011
2	1.7×10^{-11}	0.0220	0.0033
3	9.3×10^{-12}	0.0550	0.0011
4	4.9×10^{-11}	0.0220	0.0056

Rate Law: Rate $=\mathrm{k}\left[\mathrm{N}_{2}\right]^{\mathrm{m}}\left[\mathrm{H}_{2}\right]^{\mathrm{n}}$
N2 Order: ${ }^{\text {st }}$ order
H2 Order: $2^{\text {nd }}$ order
Overall Reaction Order: $3^{\text {rd }}$ order
Average Value of k: $1.39 * 10^{-6} \mathrm{~L} / \mathrm{mol}^{*} \mathrm{~s}$
***Different professors cover different material ${ }^{* * *}$
2. $\mathrm{H}_{2} \mathrm{O}_{2}$ decomposes into H_{2} and O_{2} in a first order reaction. If the initial concentration is 4.38 M , the final concentration is 2.91 M , and the decomposition takes place over 10 minutes, what is k ? Using the calculated k , how long will it take to decompose 25% of the initial amount?
a. $\mathrm{k}=0.035 / \mathrm{min} ; 7$ minutes
b. $\mathrm{k}=0.041 / \mathrm{min} ; 7$ minutes
c. $\mathrm{k}=0.035 / \mathrm{min} ; 10$ minutes
d. $\mathrm{k}=0.041 / \mathrm{min} ; 10$ minutes
e. $\mathrm{k}=0.059 / \mathrm{min} ; 7$ minutes
f. $\mathrm{k}=0.059 / \mathrm{min} ; 10$ minutes
3. Which of the following statements are true regarding exothermic reactions?
I. Heat is absorbed
II. Heat is released
III. Heat is a reactant
IV. Heat is a product
V. Heat and enthalpy will be on the same side of the equation
VI. Heat and enthalpy will be on opposite sides of the equation
VII. The energy of the reactants is higher than the products
VIII. The energy of the reactants is lower than the products
a. I, III, V, VII
b. II, IV, V, VII
c. I, II, III, IV
d. V, VI, VII, VIII
e. I, IV, V, VIII
f. II, III, V, VII

१०Cyclobutane decomposes in a first order reaction shown below.

$$
\mathrm{C}_{4} \mathrm{H}_{8(g)} \rightleftharpoons 2 \mathrm{C}_{2} \mathrm{H}_{4}(g)
$$

Given that the initial concentration of $\mathrm{C}_{4} \mathrm{H}_{8}$ is 5 M and the final concentration is 0.06 M after 0.05 seconds, what is the rate constant and the expected rate law?
a. $65 \mathrm{~s}^{-1}$; rate $=\mathrm{k}\left[\mathrm{C}_{2} \mathrm{H}_{4}\right]^{2}$
b. $88 \mathrm{~s}^{-1}$; rate $=\mathrm{k}\left[\mathrm{C}_{4} \underline{H}_{8}\right]$
c. $92 \mathrm{~s}^{-1}$; rate $=\mathrm{k}\left[\mathrm{C}_{4} \mathrm{H}_{8}\right]$
d. $88 \mathrm{~s}^{-1}$; rate $=\mathrm{k}\left[\mathrm{C}_{2} \mathrm{H}_{4}\right]^{2}$
e. $65 \mathrm{~s}^{-1}$; rate $=\mathrm{k}\left[\mathrm{C}_{4} \mathrm{H}_{8}\right]$
f. $92 \mathrm{~s}^{-1}$; rate $=\mathrm{k}\left[\mathrm{C}_{2} \mathrm{H}_{4}\right]^{2}$
5. Which of the following statements are true regarding catalysts?
I. Catalysts cause products

to form slower \quad\begin{tabular}{l}
IV. Catalysts are not

reformed

\quad

VII. Catalysts affect

reaction rate; it increases
\end{tabular}

a. I, III, VI, IX
b. II, III, VI, IX
c. II, V, VI, VII
d. I, IV, VI, VIII
e. II, IV, VI, VII

Chapter 17: Equilibrium

1. Given the following chemical reaction, calculate the K_{p} given that the K_{c} is 0.28 at $900^{\circ} \mathrm{C}$.

$$
\mathrm{CS}_{2(\mathrm{~g})}+4 \mathrm{H}_{2(\mathrm{~g})} \leftrightarrow \mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})}
$$

a. 7.5×10^{-5}
b. 8.1×10^{-2}
c. 3.6×10^{-3}
d. 3.0×10^{-5}
e. 2.9×10^{-4}
2. Which of the following statements regarding Q and K are true?
I. If $K>Q$, then the reaction proceeds to the right
II. If $\mathrm{K}=\mathrm{Q}$, then the reaction is at equilibrium
III. If the reaction proceeds to the right, it will create more products
IV. If the reaction proceeds to the left, it will create more products
V. If $K>Q$, then the reaction proceeds to the left
VI. If $K<Q$, then the reaction proceeds to the left
VII. If $K=Q$, then the reaction proceeds to the right
VIII. If $K<Q$, then the reaction is at equilibrium
a. II, III, V, VIII
b. I, II, III, VI
c. IV, V, VI, VII
d. VI, VII, VIII
e. I, III, VI, VIII
***Different professors cover different material ${ }^{* * *}$
3. Fill in the table summarizing the effects of Le Chatelier's Principle.

Change	Effect on Equilibrium (Left or Right)	Effect on the value of K (Equilibrium Constant)
Increase [reactant]	Right (products)	None
Increase [product]	Left (reactants)	None
Decrease [reactant]	Left (reactants)	None
Decrease [product]	Right (products)	None
Increase pressure	Towards side with fewer moles of gas	None
Increase volume	Towards side with more moles of gas	None
Decrease pressure	Toward side with more moles of gas	None
Decrease volume	Towards side with fewer moles of gas	None
Increase pressure (inert gas)	No change in volume, no change; concentrations unchanged	None
Increase temperature	Towards absorption of heat (Endothermic shift right) (Exothermic shift left)	Endothermic, increases Exothermic, decreases
Decrease temperature	Towards release of heat (Endothermic shift left) (Exothermic shift right)	Endothermic, decreases Exothermic, increases
Add catalyst	None; forward and reverse rates increase equally	None

Different professors cover different material

Chapter 18: Acid-Base Equilibria

1. Which of the following statements regarding acids, bases, and Kas is true?
I. The stronger the acid, the larger the Ka , the larger the pKa
II. The stronger the acid, the larger the Ka , the smaller the pKa
III. The weaker the acid, the lower the concentration of $\mathrm{H} 3 \mathrm{O}+$, the larger the pKa
IV. The larger the pKa , the smaller the Ka
V. A strong acid is a weak base
VI. Kw, Ka, and Kb are related to each other in the equation $\mathrm{Kw}=\mathrm{Ka} * \mathrm{~Kb}$
VII. The equilibrium of an acid base reaction goes from the stronger acid to the weaker acid
VIII. The equilibrium of an acid base reaction goes from the weaker acid to the stronger acid
IX. If the reaction proceeds to the right, $K c>1$.
a. I, VIII
b. All but I, VIII
c. II, III, VII, VIII
d. IV, V, VII, VIII
e. I, III, IV, VII
2. Which of the following statements regarding pH is true?
I. Acidic solutions have a higher concentration of OH^{-}
II. Basic solutions have a higher concentration of OH^{-}
IV. $\mathrm{Kw}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{OH}^{-}\right]}$
III. A neutral solution has an equal
V. $\mathrm{Kw}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{*}\left[\mathrm{OH}^{-}\right]$
concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}
VI. $\mathrm{pH}+\mathrm{pOH}=14$
VII. $\mathrm{pH}-\mathrm{pOH}=14$
a. I, II, IV, VII
b. II, III, V, VI
c. III, IV, V, VII
d. II, IV, VI
3. If an unknown weak acid is 0.798% dissociated in a 2.15 M solution. What is the Ka of the acid, the pKa , and the identity of the acid?
a. $2.46 * 10^{-3}, 10.5$, Formic acid
b. $5.12 * 10^{-5}, 3.14$, Lactic acid
c. $1.38 * 10^{-4}, 3.86$, Lactic acid
d. $9.17^{*} 10^{-4}, 4.68$, Formic acid
***Different professors cover different material ${ }^{* * *}$
4. What are the equilibrium values of carbonic acid and the pH of a 1.34 M solution?
$\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]=1.34 \mathrm{M}$
$\left[\mathrm{HCO}_{3}{ }^{-}\right]=0.00077 \mathrm{M}$
$\left[\mathrm{CO}_{3}{ }^{2-}\right]=4.7^{*} 10^{-11} \mathrm{M}$
$\mathrm{pH}=3.11$
5. Which salts yield neutral solutions?
a. $\mathrm{NH}_{4} \mathrm{Cl}$
b. CaCl_{2}
c. LiNO_{3}
d. $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$
e. B and C
f. A and D
g. None of the above
6. Which of the following act as Lewis acids?
a. Ba^{2+}
b. NH_{3}
c. AlCl_{3}
d. $\mathrm{H}_{2} \mathrm{O}$
e. A and C
f. B and D
Different professors cover different material

Chapter 19: Ionic Equilibria in Aqueous Systems

1. What is the pH of a buffer of $0.83 \mathrm{M}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2} \mathrm{Cl}$ and $1.2 \mathrm{M}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$ before and after adding 125 mL of 0.75 M HCl to 1 L of the buffer. (Info: pKb of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}=3.23$).
a. $9.776->10.93$
b. $2.726->7.901$
c. $10.93->10.85$
d. $7.901 \gg 2.726$
2. Magnesium phosphate is an anticaking agent for silicone-containing cleaning agents and salt. Its K_{sp} is $1.04 * 10^{-24}$. If $\left[\mathrm{Mg}^{2+}\right]=\left[\mathrm{PO}_{4}{ }^{3}\right]=3.6^{*} 10^{-10} \mathrm{M}$, will magnesium phosphate precipitate?
a. Yes, Qsp>Ksp
b. No, Qsp>Ksp
c. No, Qsp=Ksp
d. Yes, $\mathrm{Qsp}<\mathrm{Ksp}$
e. No , $\mathrm{Qsp}<\mathrm{Ksp}$
Different professors cover different material
3. Does the addition of HNO_{3} affect the solubility of calcium fluoride?
a. Increases solubility
b. Decreases solubility
c. No effect on solubility
4. What is the pH at the equivalence point of 912 mL of 10.67 M HBrO with 15.02 M NaOH ?
a. $\quad 12.84$
b. $\quad 13.74$
c. 2.29
d. $\quad 11.71$
e. 6.91
