Different professors are covering different material in their classes. Therefore, the questions in this review are separated by chapter.

Chapter 16: Kinetics, Rate Laws

16.1 Cyclobutane decomposes in a first order reaction shown below.

$$
\mathrm{C}_{4} \mathrm{H}_{8(g)} \rightleftharpoons 2 \mathrm{C}_{2} \mathrm{H}_{4}{ }_{(g)}
$$

Given that the initial concentration of $\mathrm{C}_{4} \mathrm{H}_{8}$ is 5 M and the final concentration is 0.06 M after 0.05 seconds, what is the rate constant and the expected rate law?
a. $65 \mathrm{~s}^{-1}$, rate $=\mathrm{k}\left[\mathrm{C}_{2} \mathrm{H}_{4}\right]^{2}$
b. $88 \mathrm{~s}^{-1}$; rate $=\mathrm{k}\left[\mathrm{C}_{4} \mathrm{H}_{8}\right]$
c. $92 \mathrm{~s}^{-1}$; rate $=\mathrm{k}\left[\mathrm{C}_{4} \mathrm{H}_{8}\right]$
d. $88 \mathrm{~s}^{-1}$; rate $=\mathrm{k}\left[\mathrm{C}_{2} \mathrm{H}_{4}\right]^{2}$
e. $65 \mathrm{~s}^{-1}$; rate $=\mathrm{k}\left[\mathrm{C}_{4} \mathrm{H}_{8}\right]$
f. $92 \mathrm{~s}^{-1}$; rate $=\mathrm{k}\left[\mathrm{C}_{2} \mathrm{H}_{4}\right]^{2}$
16.2 The decomposition of hydrogen bromide is shown below.

$$
2 \mathrm{HBr}_{(g)} \rightleftharpoons \mathrm{H}_{2_{(g)}}+\mathrm{Br}_{(g)}
$$

At 600 K , the rate constant is $1.50 \times 10^{-5} \mathrm{~L} / \mathrm{mol} \mathrm{s}$. At 800 K , the rate constant is $6.80 \times 10^{-3} \mathrm{~L} / \mathrm{mol} \mathrm{s}$. What is the activation energy for this reaction?
a. $\quad 1.82 \times 10^{2} \mathrm{~kJ} / \mathrm{mol}$
b. $1.39 \times 10^{2} \mathrm{~kJ} / \mathrm{mol}$
c. $\quad 1.58 \times 10^{2} \mathrm{~kJ} / \mathrm{mol}$
d. $1.22 \times 10^{2} \mathrm{~kJ} / \mathrm{mol}$
e. $2.02 \times 10^{2} \mathrm{~kJ} / \mathrm{mol}$
16.3 Using the information in the previous question (16.2), determine what temperature should be used if you wanted the rate to be three times as fast as it is at 600 K ?
a. 576 K
b. 582 K
c. 626 K
d. 654 K
e. 730 K
16.4 A fictional reaction is shown below with its rate law.

$$
2 \mathrm{~A}+\mathrm{B}+\mathrm{C} \rightarrow 3 \mathrm{D}, \text { rate }=\mathrm{k}[\mathrm{~A}]^{2}[\mathrm{~B}][\mathrm{C}]
$$

Which of the following mechanisms can be considered possible mechanisms for this reaction and rate law?
I: $\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{X}$ (fast)
II: $2 \mathrm{~A}+\mathrm{B}+\mathrm{C} \rightarrow 3 \mathrm{D}$ (one step)
III: $\mathrm{B}+\mathrm{C} \rightleftharpoons \mathrm{X}$ (slow)
$\mathrm{X}+\mathrm{A}+\mathrm{C} \rightarrow 3 \mathrm{D}$ (slow)
$\mathrm{M}+2 \mathrm{~A} \rightarrow 3 \mathrm{D}$ (fast)
a. I only
b. II only
c. III only
d. I and II
e. I, and III
f. I, II, and III

Chapter 17: Chemical Equilibrium, K \& O, Le Chatelier's Principle

17.1 Using Le Chatelier's Principle, match the correct shift for the given change.

Change

a) Increase in Concentration of X
b) Decrease in Concentration of X
c) Increase in Pressure
d) Decrease in Pressure
e) Increase in Temperature
f) Decrease in Temperature
g) Catalyst

Shift

I. No shift
II. Away from heat
III. Away from substance X
IV. Toward Heat
V. Towards fewer moles of gas
VI. Towards substance X
VII. Towards more moles of gas
17.2 Ammonia is created on an industrial scale using the Haber-Bosch process shown below.

$$
\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g) \quad \Delta \mathrm{H}=-92.4 \mathrm{~kJ} * \mathrm{~mol}^{-1}
$$

Predict the shift (left, right, or none) for each given change.

Change

Shift
Increase $\left[\mathrm{NH}_{3}\right]$
Decrease $\left[\mathrm{N}_{2}\right]$
Decrease $\left[\mathrm{NH}_{3}\right]$
Increase Pressure
Increase Temperature
Catalyst
Increase $\left[\mathrm{H}_{2}\right]$
17.3 A fictional reaction is shown below.

$$
\mathrm{A}_{(g)}+\mathrm{B}_{(g)} \rightleftharpoons 3 \mathrm{C}_{(g)} \quad \Delta H=+36 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

To favor the production of the product (C), under what conditions should this reaction be carried out?
a. High pressure, Low temperature
b. High pressure, High temperature
c. Low pressure, High temperature
d. Low pressure, Low temperature
17.4 Calculate Kc given the following reaction.

$$
\mathrm{PCl}_{3_{(\mathrm{g})}}+\mathrm{Cl}_{(g)} \rightleftharpoons \mathrm{PCl}_{5(g)} \quad \mathrm{K}_{\mathrm{p}}=4.07 \times 10^{-1}\left(\text { at } 226.85^{\circ} \mathrm{C}\right)
$$

If the Qc was 20.5, is the reaction at equilibrium? Or will it proceed to the left or to the right?
a. $\mathrm{Kc}=16.7$, proceed left until $\mathrm{Qc}=\mathrm{Kc}$
b. $\mathrm{Kc}=38.5$, proceed right until $\mathrm{Qc}=\mathrm{Kc}$
c. $\mathrm{Kc}=20.5$, the reaction is at equilibrium
d. $\mathrm{Kc}=30.2$, proceed right until $\mathrm{Qc}=\mathrm{Kc}$
17.5 The decomposition of phosgene is shown in the reaction below.

$$
\mathrm{COCl}_{(\mathrm{g})} \rightleftharpoons \mathrm{CO}_{(\mathrm{g})}+\mathrm{Cl}_{2(g)} \quad \mathrm{K}_{\mathrm{c}}=6.3 \times 10^{-4}(\text { at } 500 \mathrm{~K})
$$

Calculate the equilibrium partial pressures of $\mathrm{COCl}_{2}, \mathrm{CO}$, and Cl_{2} when the initial partial pressure of COCl_{2} is 0.28 atm .
a. $\mathrm{COCl}_{2}=0.5 \mathrm{~atm}, \mathrm{CO}=0.24 \mathrm{~atm}, \mathrm{Cl}_{2}=0.014 \mathrm{~atm}$
b. $\mathrm{COCl}_{2}=0.071 \mathrm{~atm}, \mathrm{CO}=\mathrm{Cl}_{2}=0.85 \mathrm{~atm}$
c. $\mathrm{COCl}_{2}=0.26 \mathrm{~atm}, \mathrm{CO}=\mathrm{Cl}_{2}=0.024 \mathrm{~atm}$
d. $\mathrm{COCl}_{2}=0.29 \mathrm{~atm}, \mathrm{CO}=0.21 \mathrm{~atm}, \mathrm{Cl}_{2}=0.79 \mathrm{~atm}$
e. $\mathrm{COCl}_{2}=0.21 \mathrm{~atm}, \mathrm{CO}=\mathrm{Cl}_{2}=0.073 \mathrm{~atm}$

Chapter 18: Acid-Base Equilibrium (Not all professors are covering Chapter 18)

18.1 Calculate the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right], \mathrm{pH},\left[\mathrm{OH}^{-}\right]$, and pOH , of 0.5 M of $\mathrm{H}_{2} \mathrm{SO}_{4}$.
a. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.5 \mathrm{M}, \mathrm{pH}=0.30,\left[\mathrm{OH}^{-}\right]=2 \times 10^{-14} \mathrm{M}, \mathrm{pOH}=13.70$
b. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.25 \mathrm{M}, \mathrm{pH}=0.60,\left[\mathrm{OH}^{-}\right]=5 \times 10^{-10} \mathrm{M}, \mathrm{pOH}=10.5$
c. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.15 \mathrm{M}, \mathrm{pH}=0.90,\left[\mathrm{OH}^{-}\right]=0.27 \mathrm{M}$, and $\mathrm{pOH}=13.2$
d. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.90 \mathrm{M}, \mathrm{pH}=3.1,\left[\mathrm{OH}^{-}\right]=8.1 \times 10^{-5} \mathrm{M}$, and $\mathrm{pOH}=10.9$
18.2 Define each of the following and provide an example.

A Brønsted-Lowry acid is a proton donor. An example is HCl .
A Brønsted-Lowry base is a proton acceptor. An example is NH_{3}.
A Lewis acid is an electron pair acceptor. An example is BF_{3}.
A Lewis base is an electron pair donor. An example is $\mathrm{H}_{2} \mathrm{O}$.
18.3 Methylamine $\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)$ has a K_{b} of 4.4×10^{-4}. What is the pH of $5 \mathrm{M} \mathrm{CH}_{3} \mathrm{NH}_{2}$?
a. 10.94
b. 7.62
c. 12.67
d. 13.63
18.4 Potassium propionate $\left(\mathrm{KCH}_{3} \mathrm{CH}_{2} \mathrm{COO}\right)$ is a food preservative that is most commonly used as an antimicrobial agent in bread. What is the pH of $0.38 \mathrm{M} \mathrm{KCH}_{3} \mathrm{CH}_{2} \mathrm{COO}$ at 298 K ? The K_{a} of propionic acid is 1.34×10^{-5}.
a. 10.13
b. 8.34
c. 9.86
d. 9.23
18.5 Which of the following is a potential Lewis acid?
a. Cl^{-}
b. OH^{-}
c. BCl_{3}
d. $\mathrm{NH}_{4}{ }^{+}$

Chapter 15: Organic Chemistry (Not all professors are covering Chapter 15)

15.1 What are the names of these four structures, in order (left to right)?

a. Cyclohexane, Cyclobutane, Cycloheptane, Cyclooctane
b. Cyclopropane, Cyclobutane, Cyclopentane, Cyclohexane
c. Cyclopropane, Cyclooctane, Cyclononane, Cyclohexane
d. Cyclobutane, Cyclopropane, Cyclohexane, Cyclononane
e. Cyclodecane, Cyclononane, Cyclopropane, Cyclohexane
15.2 Draw an example of each functional group.
a. Alkane
b. Alkene
c. Alkyne
d. Alcohol
e. Ether
f. Halide
g. Aldehyde
h. Ketone
i. Carboxylic Acid
j. Ester
k. Amine
$15.3 \mathrm{C}_{6} \mathrm{H}_{14}$ has 5 different constitutional isomers. Draw each and name according to IUPAC naming rules.
a.
b.
c.
d.
e.

