- 1.) Metallic gold crystallizes in the face-centered cubic lattice with an edge length of 407 pm. From this information, estimate the density of gold in g/cm³.
- 2.) Starting with a 70.8 g sample of benzene (C_6H_6 , 78.11 g/mol) at 48.6°C and 1.00 atm of pressure, how much energy should be removed in order to lower its temperature to -68.5°C, at constant pressure?

Δ_{vap} H° = 33.9 kJ/mol	$C_{P,liq} = 1.73 \text{ J/g}^{\circ}\text{C}$	$C_{P,s} = 1.51 \text{ J/g}^{\circ}\text{C}$	Normal $T_{melting} = 5.5^{\circ}C$
$\Delta_{fus} \mathbf{H}^{\circ} = 9.8 \text{ kJ/mol}$	$C_{P,gas} = 1.06 \text{ J/g}^{\circ}\text{C}$	$\rho = 0.879 \text{ g/cm}^3$	Normal $T_{boiling} = 80.1^{\circ}C$

- 3.) Which of the following will decrease the equilibrium concentration of an inert gas (such as N_2) in a beaker of water assuming that equilibrium is re-achieved?
- I. Decreasing the temperature of the water
- II. Increasing the volume of the water

(2) II only

- III. Decreasing the pressure of the gas above the liquid
- ---- guarante de la g
- 4.) Place the following substances in order of *increasing* normal boiling point: SF₆, SiH₄, SF₄
- (1) SF₆ < SF₄ < SiH₄

(1) I only

(2) SF₆ < SiH₄ < SF₄

(III) III only

 $(3) SiH_4 < SF_6 < SF_4$

- (4) $SiH_4 < SF_4 < SF_6$
- (5) SF₄ < SF₆ < SiH₄
- 5.) Identify the Period 2 element which has the following successive ionization energies, in kJ/mol

$$IE_1 = 520;$$

$$IE_2 = 7298;$$

$$IE_3 = 11,815;$$

(IV) I and III

$$IE_4 = 16,000;$$

(V) I, II, and III

$$IE_5 = 22,831;$$

$$IE_6 = 27,277;$$

$$IE_7 = 32,987;$$

$$IE_8 = 38,235$$

- (1) Beryllium
- (2) Lithium
- (3) Nitrogen
- (4) Oxygen
- (5) Neon

6.) When the chlorite ion is oxidized to form the chlorate ion, which of the following occurs?						
(1) The Cl-O bond order changes from 1.50 to 1.33						
(2) The formal charge on the chlorine atom changes from 0 to ± 1						
(3) The oxidation state of the chlorine atom changes from $+4$ to $+6$						
(4) The hybridization of the chlorine atom remains as sp^3						
(5) The geometry of the anion changes from linear to trigonal planar						
7.) How many sigma and pi bonds, respectively, are in NH ₂ CH ₂ CHCHCOOH?						
(1) 13, 2 (2) 12, 1 (3) 11, 4 (4) 10, 2 (5) 9, 1						
 8.) In an experiment, 25.0 ml of a gas with a pressure of 1.00 atm is contained in a balloon at 25.00°C. The balloon's temperature is adjusted until the pressure is 0.75 atm at a volume of 31.1 ml. What is the final temperature of the gas under the new conditions? 9.) How many resonance structures does the oxalate dianion [O₂CCO₂]²⁻ have? 						
10.) Compare the ionic sizes of Cl^- and K^+ . ($Z_{eff}=$ effective nuclear charge)						
(1) $K^{\scriptscriptstyle +}$ will have a larger ionic size because its outer electrons experience a higher $Z_{\rm eff}$						
(2) $K^{\scriptscriptstyle +}$ will have a larger ionic size because its outer electrons experience a smaller Z_{eff}						
(3) $K^{\scriptscriptstyle +}$ will have a smaller ionic size because its outer electrons experience a higher $Z_{\rm eff}$						
(4) $K^{\scriptscriptstyle +}$ will have a smaller ionic size because its outer electrons experience a smaller $Z_{\rm eff}$						
(5) $K^{\scriptscriptstyle +}$ will have the same ionic size because it and Cl $^{\scriptscriptstyle -}$ experience the same $Z_{\rm eff}$						
11.) A sample of a hydrocarbon produced 3.14 grams of CO_2 and 1.28 grams of H_2O during combustion analysis. If the hydrocarbon has a molar mass between 50 and 60 g/mol, what is its molecular formula?						

- 12.) A mixture of Xe(g) and $O_2(g)$, formed by the complete decomposition of $XeO_4(g)$, is collected over water at $34^{\circ}C$ at a total pressure of 760 mmHg. If the vapor pressure of water is 40 mmHg at $34^{\circ}C$, what is the partial pressure of O_2 ?
- 13.) According to molecular orbital theory, what are the bond order and the number of unpaired electrons in CN, respectively? The valence molecular orbital sequence for CN is:

$$\sigma_{2s}$$
, σ_{2s}^* , $\sigma_{2px} = \pi_{2py}$, σ_{2p} , $\sigma_{2px}^* = \pi_{2py}$, σ_{2p}^*

- 14.) When 50.0 ml of 0.200 M AgNO₃ and 50.0 ml of 0.100 M CaCl₂, both at 25.0°C, are reacted in a coffee-cup calorimeter, the temperature of the reacting mixture increases to 26.0°C. Calculate ΔH in kJ/mol of AgCl produced. Assume the density of the solution is 1.05 g/mol and the specific heat capacity of the solution is 4.20 J/g°C.
- 15.) Rate data have been determined at a particular temperature for the reaction
- $2 \text{ NO(g)} + \text{Cl}_2(g) \rightarrow 2 \text{ NOCl(g)}$. What is the numerical value for the rate constant?

Experiment	[NO] (M)	[Cl ₂] (M)	Rate (M/s)
1	0.0300	0.0100	3.4x10 ⁻⁴
2	0.0150	0.0100	8.5x10 ⁻⁵
3	0.0150	0.0400	3.4x10 ⁻⁴