1.) Metallic gold crystallizes in the face-centered cubic lattice with an edge length of 407 pm. From this information, estimate the density of gold in $\mathrm{g} / \mathrm{cm}^{3}$.
2.) Starting with a 70.8 g sample of benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}, 78.11 \mathrm{~g} / \mathrm{mol}\right)$ at $48.6^{\circ} \mathrm{C}$ and 1.00 atm of pressure, how much energy should be removed in order to lower its temperature to $-68.5^{\circ} \mathrm{C}$, at constant pressure?

| $\Delta_{\text {vap }} \mathrm{H}^{\circ}=33.9 \mathrm{~kJ} / \mathrm{mol}$ | $\mathrm{Cr}_{\mathrm{P}, \text { liq }}=1.73 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$ | $\mathrm{Cr}_{\mathrm{P}, \mathrm{s}}=1.51 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$ | Normal $\mathrm{T}_{\text {melting }}=5.5^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: |
| $\Delta_{\text {fus }} \mathbf{H}^{\circ}=9.8 \mathrm{~kJ} / \mathrm{mol}$ | $\mathrm{Cr}_{\text {P,gas }}=1.06 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$ | $\rho=0.879 \mathrm{~g} / \mathrm{cm}^{3}$ | Normal $\mathrm{T}_{\text {boiling }}=80.1^{\circ} \mathrm{C}$ |

3.) Which of the following will decrease the equilibrium concentration of an inert gas (such as $\mathbf{N}_{2}$ ) in a beaker of water assuming that equilibrium is re-achieved?
I. Decreasing the temperature of the water
II. Increasing the volume of the water
III. Decreasing the pressure of the gas above the liquid
(1) I only
(2) II only
(III) III only
(IV) I and III
(V) I, II, and III
4.) Place the following substances in order of increasing normal boiling point: $\mathrm{SF}_{6}, \mathrm{SiH}_{4}$, SF4
(1) $\mathrm{SF}_{6}<\mathrm{SF}_{4}<\mathrm{SiH}_{4}$
(2) $\mathrm{SF}_{6}<\mathrm{SiH}_{4}<\mathrm{SF}_{4}$
(3) $\mathrm{SiH}_{4}<\mathrm{SF}_{6}<\mathrm{SF}_{4}$
(4) $\mathrm{SiH}_{4}<\mathrm{SF}_{4}<\mathrm{SF}_{6}$
(5) $\mathrm{SF}_{4}<\mathrm{SF}_{6}<\mathrm{SiH}_{4}$
5.) Identify the Period 2 element which has the following successive ionization energies, in kJ/mol
$\mathrm{IE}_{1}=520 ;$
$\mathrm{IE}_{2}=7298 ;$
$\mathrm{IE}_{3}=11,815 ;$
$\mathrm{IE}_{4}=16,000 ;$
$\mathrm{IE}_{5}=\mathbf{2 2 , 8 3 1} ;$
$\mathrm{IE}_{6}=27,277 ;$
$\mathrm{IE}_{7}=32,987$;
$\mathrm{IE} 8=38,235$
(1) Beryllium
(2) Lithium
(3) Nitrogen
(4) Oxygen
(5) Neon
6.) When the chlorite ion is oxidized to form the chlorate ion, which of the following occurs?
(1) The $\mathbf{C l}-\mathrm{O}$ bond order changes from 1.50 to 1.33
(2) The formal charge on the chlorine atom changes from 0 to +1
(3) The oxidation state of the chlorine atom changes from $+\mathbf{4}$ to +6
(4) The hybridization of the chlorine atom remains as $\mathrm{sp}^{3}$
(5) The geometry of the anion changes from linear to trigonal planar
7.) How many sigma and pi bonds, respectively, are in $\mathrm{NH}_{2} \mathbf{C H}_{2} \mathbf{C H C H C O O H}$ ?
(1) 13, 2
(2) 12, 1
(3) 11, 4
(4) 10,2
(5) 9,1
8.) In an experiment, 25.0 ml of a gas with a pressure of 1.00 atm is contained in a balloon at $25.00^{\circ} \mathrm{C}$. The balloon's temperature is adjusted until the pressure is 0.75 atm at a volume of 31.1 ml . What is the final temperature of the gas under the new conditions?
9.) How many resonance structures does the oxalate dianion [ $\left.\mathrm{O}_{2} \mathrm{CCO}\right]^{2-}$ have?
10.) Compare the ionic sizes of $\mathrm{Cl}^{-}$and $\mathrm{K}^{+}$. (Zeff $=$effective nuclear charge)
(1) $\mathrm{K}^{+}$will have a larger ionic size because its outer electrons experience a higher $\mathbf{Z}_{\text {eff }}$
(2) $\mathrm{K}^{+}$will have a larger ionic size because its outer electrons experience a smaller $\mathbf{Z}_{\text {eff }}$
(3) $\mathrm{K}^{+}$will have a smaller ionic size because its outer electrons experience a higher $\mathbf{Z}_{\text {eff }}$
(4) $K^{+}$will have a smaller ionic size because its outer electrons experience a smaller $Z_{\text {eff }}$
(5) $\mathrm{K}^{+}$will have the same ionic size because it and $\mathrm{Cl}^{-}$experience the same $\mathrm{Z}_{\text {eff }}$
11.) A sample of a hydrocarbon produced 3.14 grams of $\mathrm{CO}_{2}$ and 1.28 grams of $\mathrm{H}_{2} \mathrm{O}$ during combustion analysis. If the hydrocarbon has a molar mass between 50 and $60 \mathrm{~g} / \mathrm{mol}$, what is its molecular formula?
12.) A mixture of $\mathrm{Xe}(\mathrm{g})$ and $\mathrm{O}_{2}(\mathrm{~g})$, formed by the complete decomposition of $\mathrm{XeO}_{4}(\mathrm{~g})$, is collected over water at $34^{\circ} \mathrm{C}$ at a total pressure of 760 mmHg . If the vapor pressure of water is 40 mmHg at $34^{\circ} \mathrm{C}$, what is the partial pressure of $\mathrm{O}_{2}$ ?
13.) According to molecular orbital theory, what are the bond order and the number of unpaired electrons in CN , respectively? The valence molecular orbital sequence for CN is:
$\sigma_{2 s}, \sigma^{*}{ }_{2 s}, \pi_{2 p x}=\pi_{2 p y}, \sigma_{2 p}, \pi^{*}{ }_{2 p x}=\pi^{*}{ }_{2 p y}, \sigma^{*}{ }_{2 p}$
14.) When 50.0 ml of $0.200 \mathrm{M} \mathrm{AgNO}_{3}$ and 50.0 ml of $0.100 \mathrm{M} \mathrm{CaCl}_{2}$, both at $25.0^{\circ} \mathrm{C}$, are reacted in a coffee-cup calorimeter, the temperature of the reacting mixture increases to $26.0^{\circ} \mathrm{C}$. Calculate $\Delta \mathrm{H}$ in $\mathrm{kJ} / \mathrm{mol}$ of AgCl produced. Assume the density of the solution is $1.05 \mathrm{~g} / \mathrm{mol}$ and the specific heat capacity of the solution is $4.20 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$.
15.) Rate data have been determined at a particular temperature for the reaction
$2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NOCl}(\mathrm{g})$. What is the numerical value for the rate constant?

| Experiment | $[\mathbf{N O}](\mathbf{M})$ | $\left[\mathbf{C l}_{2}\right](\mathbf{M})$ | Rate $(\mathbf{M} / \mathbf{s})$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | $\mathbf{0 . 0 3 0 0}$ | $\mathbf{0 . 0 1 0 0}$ | $\mathbf{3 . 4 \times 1 0 ^ { - 4 }}$ |
| $\mathbf{2}$ | $\mathbf{0 . 0 1 5 0}$ | $\mathbf{0 . 0 1 0 0}$ | $\mathbf{8 . 5 \times 1 0 ^ { - 5 }}$ |
| $\mathbf{3}$ | $\mathbf{0 . 0 1 5 0}$ | $\mathbf{0 . 0 4 0 0}$ | $\mathbf{3 . 4 \times 1 0 ^ { - 4 }}$ |

