1.) Metallic gold crystallizes in the face-centered cubic lattice with an edge length of 407 pm. From this information, estimate the density of gold in $\mathbf{g} / \mathrm{cm}^{3}$.
2.) Starting with a 70.8 g sample of benzene $\left(\mathrm{C}_{6} \mathrm{H} 6,78.11 \mathrm{~g} / \mathrm{mol}\right)$ at $48.6^{\circ} \mathrm{C}$ and 1.00 atm of pressure, how much energy should be removed in order to lower its temperature to $68.5^{\circ} \mathrm{C}$, at constant pressure?
$\Delta_{\text {vap }} \mathrm{H}^{\circ}=33.9 \mathrm{~kJ} / \mathrm{mol} \mathrm{Cp}$, liq $=1.73 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C} \mathrm{CP}_{3, s}=1.51 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$ Normal $\mathrm{T}_{\text {melting }}=5.5^{\circ} \mathrm{C} \Delta_{\text {fus }} \mathrm{H}^{\circ}=9.8$ $\mathrm{kJ} / \mathrm{mol} \mathrm{Cr}$, gas $=1.06 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C} \rho=0.879 \mathrm{~g} / \mathrm{cm}^{3}$ Normal $\mathrm{T}_{\text {boiling }}=80.1^{\circ} \mathrm{C}$
3.) Place the following substances in order of increasing normal boiling point: $\mathrm{SF}_{6}, \mathrm{SiH} 4$, SF4
(1) $\mathrm{SF}_{6}<\mathrm{SF}_{4}<\mathrm{SiH}_{4}$
(2) $\mathrm{SF}_{6}<\mathrm{SiH}_{4}<\mathrm{SF}_{4}$
(3) $\mathrm{SiH}_{4}<\mathrm{SF}_{6}<\mathrm{SF}_{4}$
(4) $\mathrm{SiH}_{4}<\mathrm{SF}_{4}<\mathrm{SF}_{6}$
(5) $\mathrm{SF}_{4}<\mathrm{SF}_{6}<\mathrm{SiH}_{4}$
4.) Identify the Period 2 element which has the following successive ionization energies, in kJ/mol

$\underline{I E} 1=520 ;$	$\mathrm{IE} 2=7298 ;$	$\mathrm{IE}_{3}=\mathbf{1 1 , 8 1 5 ;}$	$I E 4=16,000 ;$
$\mathrm{IE}_{5}=\mathbf{2 2 , 8 3 1} ;$	$\mathrm{IE}_{6}=27,277 ;$	$\mathrm{IE}_{7}=32,987 ;$	$\underline{I E} 8=38,235$

(1) Beryllium (2) Lithium (3) Nitrogen (4) Oxygen (5) Neon
5.) When the chlorite ion is oxidized to form the chlorate ion, which of the following occurs?
(1) The Cl-O bond order changes from 1.50 to 1.33
(2) The formal charge on the chlorine atom changes from 0 to +1
(3) The oxidation state of the chlorine atom changes from +4 to +6 (4) The hybridization of the chlorine atom remains as $\mathbf{s p}^{3}$
(5) The geometry of the anion changes from linear to trigonal planar
6.) How many sigma and pi bonds, respectively, are in $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CHCHCOOH}$?
(1) 13, 2 (2) 12, 1 (3) 11, 4 (4) 10, 2 (5) 9, 1
7.) In an experiment, 25.0 ml of a gas with a pressure of 1.00 atm is contained in a balloon at $25.00^{\circ} \mathrm{C}$. The balloon's temperature is adjusted until the pressure is 0.75 atm at a volume of 31.1 ml . What is the final temperature of the gas under the new conditions?
8.) How many resonance structures does the oxalate dianion $\left[\mathrm{O}_{2} \mathrm{CCO}\right]^{2-}$ have?
9.) Compare the ionic sizes of Cl^{-}and K^{+}. (Zeff $=$effective nuclear charge)
(1) K^{+}will have a larger ionic size because its outer electrons experience a higher $Z_{\text {eff }}$
(2) K^{+}will have a larger ionic size because its outer electrons experience a smaller $Z_{\text {eff }}$
(3) K^{+}will have a smaller ionic size because its outer electrons experience a higher $Z_{\text {eff }}$
(4) K^{+}will have a smaller ionic size because its outer electrons experience a smaller $Z_{\text {eff }}$
(5) K^{+}will have the same ionic size because it and Cl^{-}experience the same $\mathrm{Zeff}_{\text {ef }}$
10.) A mixture of $\mathrm{Xe}(\mathrm{g})$ and $\mathrm{O}_{2}(\mathrm{~g})$, formed by the complete decomposition of $\mathrm{XeO}_{4}(\mathrm{~g})$, is collected over water at $34^{\circ} \mathrm{C}$ at a total pressure of 760 mmHg . If the vapor pressure of water is 40 mmHg at $34^{\circ} \mathrm{C}$, what is the partial pressure of O_{2} ?
11.) According to molecular orbital theory, what are the bond order and the number of unpaired electrons in CN , respectively? The valence molecular orbital sequence for CN is:
$\boldsymbol{\sigma} 2 \mathrm{~s}, \sigma^{*}{ }_{2 \mathrm{~s}}, \pi_{2 \mathrm{px}}=\pi_{2 \mathrm{py}}, \sigma_{2 \mathrm{p}}, \pi^{*}{ }_{2 \mathrm{px}}=\pi^{*}{ }_{2 \mathrm{py}}, \sigma^{*}{ }_{2 \mathrm{p}}$
12.) When 50.0 ml of $\mathbf{0 . 2 0 0} \mathrm{M} \mathrm{AgNO}_{3}$ and 50.0 ml of $0.100 \mathrm{M} \mathrm{CaCl}_{2}$, both at $25.0^{\circ} \mathrm{C}$, are reacted in a coffee-cup calorimeter, the temperature of the reacting mixture increases to $26 . \mathbf{0}^{\circ} \mathrm{C}$. Calculate $\Delta \mathrm{H}$ in $\mathrm{kJ} / \mathrm{mol}$ of AgCl produced. Assume the density of the solution is $1.05 \mathrm{~g} / \mathrm{mol}$ and the specific heat capacity of the solution is $4.20 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$.
13.) Rate data have been determined at a particular temperature for the reaction $2 \mathrm{NO}(\mathrm{g})+$ $\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathbf{2} \mathrm{NOCl}(\mathrm{g})$. What is the numerical value for the rate constant?
14.) A sample containing C, H, and O produced 1.5 grams of CO_{2} and 0.41 grams of $\mathrm{H}_{2} \mathrm{O}$ during combustion analysis. If the this molecule has a molar mass between 170 and 180 $\mathrm{g} / \mathrm{mol}$, what is its molecular formula?
15.) $\mathrm{C}_{4} \mathrm{H}_{8}$ decomposes into 2 molecules of $\mathrm{C}_{2} \mathrm{H}_{4}$ in an overall first-order reaction with a rate constant of $87 \mathrm{~s}^{-1}$. What is the concentration of $\mathrm{C}_{4} \mathrm{H}_{8}$ after 10 s if the initial concentration is $\mathbf{2 M}$. How long will it take for $\mathbf{7 0 \%}$ of the $\mathbf{2 M} \mathrm{C}_{4} \mathrm{H}_{8}$ to decompose?

Experiment 1

2
3
[NO] (M) 0.03000 .01500 .0150
[Cl2] (M) 0.01000 .01000 .0400
Rate (M/s) $3.4 \times 10^{-4} 8.5 \times 10^{-5} 3.4 \times 10^{-4}$

