1.) Metallic gold crystallizes in the face-centered cubic lattice with an edge length of 407 pm. From this information, estimate the density of gold in g/cm³.

2.) Starting with a 70.8 g sample of benzene (C₆H₆, 78.11 g/mol) at 48.6°C and 1.00 atm of pressure, how much energy should be removed in order to lower its temperature to -68.5°C, at constant pressure?

Δ_{vap} H° = 33.9 kJ/mol	$C_{P,liq} = 1.73 \text{ J/g}^{\circ}C$	$C_{P,s} = 1.51 \text{ J/g}^{\circ}\text{C}$	Normal $T_{melting} = 5.5^{\circ}C$
$\Delta_{fus} \mathbf{H}^\circ = 9.8 \text{ kJ/mol}$	$C_{P,gas} = 1.06 \text{ J/g}^{\circ}C$	$\rho = 0.879 \text{ g/cm}^3$	Normal $T_{boiling} = 80.1^{\circ}C$

3.) Which of the following will decrease the equilibrium concentration of an inert gas (such as N₂) in a beaker of water assuming that equilibrium is re-achieved?

I. Decreasing the temperature of the water

II. Increasing the volume of the water

III. Decreasing the pressure of the gas above the liquid

(1) I only	(2) II only	(III) III only	(IV) I and III	(V) I, II, and III
------------	-------------	----------------	----------------	--------------------

4.) Place the following substances in order of *increasing* normal boiling point: SF₆, SiH₄, SF₄

$(1) \mathbf{SF_6} < \mathbf{SF_4} < \mathbf{SiH_4}$	$(2) SF_6 < SiH_4 < SF_4$	$(3) SiH_4 < SF_6 < SF_4$
$(4) SiH_4 < SF_4 < SF_6$	(5) SF ₄ < SF ₆ < SiH ₄	

5.) Identify the Period 2 element which has the following successive ionization energies, in kJ/mol

$IE_1 = 520;$	$IE_2 =$	7298;	$IE_3 = 11,815;$	$IE_4 = 16,000;$
IE5 = 22,831	; IE ₆ =	27,277;	IE7 =32,987;	$IE_8 = 38,235$
(1) Beryllium	(2) Lithium	(3) Nitrogen	(4) Oxygen	(5) Neon

6.) When the chlorite ion is oxidized to form the chlorate ion, which of the following occurs?

(1) The Cl-O bond order changes from 1.50 to 1.33

(2) The formal charge on the chlorine atom changes from 0 to +1

(3) The oxidation state of the chlorine atom changes from +4 to +6

(4) The hybridization of the chlorine atom remains as sp³

(5) The geometry of the anion changes from linear to trigonal planar

7.) How many sigma and pi bonds, respectively, are in NH₂CH₂CHCHCOOH?

 $(1) 13, 2 \qquad (2) 12, 1 \qquad (3) 11, 4 \qquad (4) 10, 2 \qquad (5) 9, 1$

8.) In an experiment, 25.0 ml of a gas with a pressure of 1.00 atm is contained in a balloon at 25.00°C. The balloon's temperature is adjusted until the pressure is 0.75 atm at a volume of 31.1 ml. What is the final temperature of the gas under the new conditions?

9.) How many resonance structures does the oxalate dianion [O₂CCO2]²⁻ have?

10.) Compare the ionic sizes of Cl⁻ and K⁺. (Z_{eff} = effective nuclear charge)

(1) K^+ will have a larger ionic size because its outer electrons experience a higher Z_{eff}

(2) $K^{\scriptscriptstyle +}$ will have a larger ionic size because its outer electrons experience a smaller Z_{eff}

(3) K^+ will have a smaller ionic size because its outer electrons experience a higher Z_{eff}

(4) K^+ will have a smaller ionic size because its outer electrons experience a smaller Z_{eff}

(5) K⁺ will have the same ionic size because it and Cl⁻ experience the same Z_{eff}

11.) A sample of a hydrocarbon produced 3.14 grams of CO₂ and 1.28 grams of H₂O during combustion analysis. If the hydrocarbon has a molar mass between 50 and 60 g/mol, what is its molecular formula?

12.) A mixture of Xe(g) and O₂(g), formed by the complete decomposition of XeO₄(g), is collected over water at 34°C at a total pressure of 760 mmHg. If the vapor pressure of water is 40 mmHg at 34°C, what is the partial pressure of O₂?

13.) According to molecular orbital theory, what are the bond order and the number of unpaired electrons in CN, respectively? The valence molecular orbital sequence for CN is:

 $\sigma_{2s}, \sigma^{*}_{2s}, \pi_{2px} = \pi_{2py}, \sigma_{2p}, \pi^{*}_{2px} = \pi^{*}_{2py}, \sigma^{*}_{2p}$

14.) When 50.0 ml of 0.200 M AgNO₃ and 50.0 ml of 0.100 M CaCl₂, both at 25.0°C, are reacted in a coffee-cup calorimeter, the temperature of the reacting mixture increases to 26.0°C. Calculate Δ H in kJ/mol of AgCl produced. Assume the density of the solution is 1.05 g/mol and the specific heat capacity of the solution is 4.20 J/g°C.

15.) Rate data have been determined at a particular temperature for the reaction

Experiment	[NO] (M)	[Cl ₂] (M)	Rate (M/s)
1	0.0300	0.0100	3.4x10 ⁻⁴
2	0.0150	0.0100	8.5x10 ⁻⁵
3	0.0150	0.0400	3.4x10 ⁻⁴

 $2 \operatorname{NO}(g) + \operatorname{Cl}_2(g) \rightarrow 2 \operatorname{NOCl}(g)$. What is the numerical value for the rate constant?

16.) Benzene (C₆H₆, 78.11 g/mol) is a liquid at room temperature with a normal boiling point of 80°C, and its molal boiling point elevation constant K_b is 2.65 °C kg/mol. Anthracene (C₁₄H₁₀, 178.23 g/mol) is a solid at room temperature but is quite soluble in liquid benzene. Predict the boiling point of a solution that is 25%-by-mass anthracene dissolved in benzene.