Chapter 8: Electron Configuration and Periodic Trends

1. Which of the following full sets of quantum numbers is incorrect?

```
a) The e<sup>-</sup> gained from Br \rightarrow Br<sup>-</sup>; n=4, l=1, m<sub>i</sub>=+1, m<sub>s</sub>=-½ 4p^{4} N=4 \ell= 1 b) The outermost e- in Rb; n=5, l=0, m<sub>i</sub>=0, m<sub>s</sub>=+½ 5s^{1} C) The 6<sup>th</sup> e<sup>-</sup> in O; n=2, l=0, m<sub>i</sub>=0, m<sub>s</sub>=+½ 2\rho^{2} N=7 \ell= 1 d) The 3<sup>rd</sup> e<sup>-</sup> in F; n=2, l=0, m<sub>i</sub>=0, m<sub>s</sub>=+½ 2s^{1} N=7 \ell= 0 e) The 8<sup>th</sup> e<sup>-</sup> in O; n=2, l=1, m<sub>i</sub>=-1, m<sub>s</sub>=-½ 2p^{4} N=7 \ell= 1
```

2. Which of the following electron configurations are correct?

```
(I) Hg: [Xe] 6s<sup>2</sup>4f<sup>14</sup>5d<sup>10</sup>(II) Mo: [Kr] 5s<sup>1</sup>4d<sup>5</sup> IH. Cr: [Ar] 4s<sup>2</sup>3d<sup>4</sup> IV. Au: [Xe] 6s<sup>2</sup>4f<sup>14</sup>5d V. Cu: [Ar] 4s<sup>1</sup>3d<sup>10</sup>
a) I, III, V
b) II, IV
c) J, II, V
```

d) None

e) All

3. Which of the following electron configurations for these ions are correct?

4. Rank these elements by their increasing atomic size. Which one is correct.

```
-a) Sr < Ca < Mg
-b) Rb < Br < Kr
-e) Se < Br < Cl
(d) Xe < I < Ba
-e) K < P < F

Mg < Ca < Sr
Kr < Br < Rb
F < P < F
```

5. Rank these elements by increasing IE₁.

```
a) Cs < Xe < I Cs < I < Xe
b) Kr < Ar < He Kr < Ar < He
c) Rb < Ca < K Ca < K < Rb
d) Sn < Sb < I
e) A and C
f) B and D
```

6. Which of the following statements on successive IE is true?

a) Between Rb, Sr, and Y, Rb has the highest IE $_2$ &cove ℓ^-

b) Between Rb, Sr, and Y, Sr has the highest IE₂

c) Between Na, Mg, Al, and Si, Al has the highest IE4 core e, Al has the

d) Between Na, Mg, Al, and Si, Si has the highest IE4 most protons out of

e) A and C

Na, Mg, and Al f) B and D

7. Which of the following ions are paramagnetic?

(I)Co³⁺

II. La³⁺ (III.)Cr³⁺ (IV.)V³⁺ V. Zn²⁺ D: diamagnetic $Co^{3+}: (Ar) 3 d^{b} \Rightarrow P$

(a) 1, III, IV b) I, III, V

La3+: [Xe] → D Zn2+: [Av] 3d10 → D

c) II, V d) All

e) None

 $Cr^{3+}: \Gamma Ar / 3d^3 \rightarrow P$

8. Which of the following ions are diamagnetic?

 $I. Os^{3+}$

a) II, III, IV

 $\begin{array}{ccc}
\text{III. Ni}^{2+} & \text{IV. } Zr^{2+} \\
\text{Os}^{3+}: \left[xe\right] 4f^{14} 5d^{5} \rightarrow P & \text{Zr}^{2+}: \left[xr\right] 4d^{2} \rightarrow P
\end{array}$

b)II, V c) I, V

Hg2+: [Xe]4f155d10→D Zn2+: (Ar]3d10→D

d) All

Ni2+: TAr]3d8 → P e) None

9. Which ions are ranked correctly by decreasing size?

 $\underbrace{I.Sr^{2+} > Ca^{2+} > Mg^{2+} \ (II) \ S^{2-} > Cl^{-} > K^{+} - HH. \ Mg^{2+} > Na^{+} > F^{-} - HV. \ Ba^{2+} > Cs^{+} > I^{-} \ (V) P^{3-} > S^{2-} > Cl^{-} }$

a) I, III, V

 $\mathbb{I})Sr^{2+}>Ca^{2+}>Mg^{2+}\qquad \mathbb{I})\qquad p^{3-}>S^{2-}>C1^{-}$

b) II, IV

II) S2->C1->K+

(c) I, II, V

d) I, IV, V \longrightarrow F > Na⁺ > Mg²⁺

e) II, III, IV, V

 \mathbb{I}) \mathbb{I}^{-}) $(s^{+}) Ba^{2+}$

Chapter 9: Chemical Bonding Models

10. Which of the following is the correct order for increasing bond length?

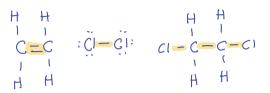
C-C, C=C, $C \equiv C$

1 bond order = I bond length

a) $C \equiv C < C = C < C - C$

(b) C=C < C \equiv C < C-C

c) $C-C < C=C < C \equiv C$

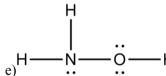

d) $C \equiv C < C - C < C = C$

11. How are bond length and bond strength related?

b) Directly related

- c) Length = $\frac{1}{2}$ Strength
- d) Strength = $\frac{1}{2}$ Length
- 12. Calculate the enthalpy of the reaction.

$$\mathsf{C_2H_4}_{(g)} + \; \mathsf{Cl_2}_{(g)} \rightleftharpoons \mathsf{C_2H_4Cl_2}_{(g)}$$


Given the following bond energies:

$$\Delta H = \left[014 + 243 \right] - \left[347 + (2)(339) \right]$$

$$\Delta H = -168 K S$$

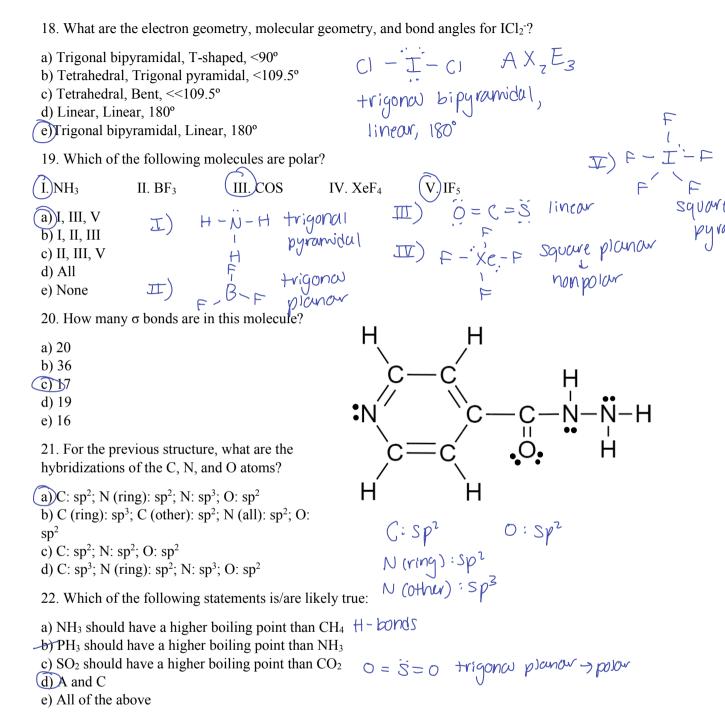
Chapter 10: Molecular Geometry

13. Which of the following Lewis structures is incorrect?

14. Draw NO3- and its resonance structures. Calculate its formal charges.

$$\vdots = N - 0$$

$$\vdots = N - 0$$


- 15. Which of the following are exceptions to the octet rule?
- I.PCl₅(II.)BeCl₂ III. CH₄(IV.)SF₆ V. H₂O

16.VSEPR Theory. Fill in the following chart including the structure, bond angles, shape name, and AXyEz format.

	VSEPR Geometries					
	Electron Pairs	0 Lone Pair	1 Lone Pair	2 Lone Pairs	3 Lone Pairs	4 Lone Pairs
Sp	2	AX_2 $X - A - X$ Linton				
2b ₅	3	180° X 120° X X	(.) X - A - X < 120° A X = bent			
SP3	4	X) 109.5° XIII A X * tetrahedran A X4	AXZE, bent AXZE AXZE	bent, ANJEZ		
p^3d	5	× 120° × +vigonw	trigonal pyvamidal AXIIE X - A - X 40° X 170° Seesaw	T-shape	Linear, 180° Ax ₂ E ₃	
p ³ d ²	6	$X \times AX_b$ X - A - X $X \times AX_b$ X - A - X $X \times AX_b$ $X \times AX_b$ X	X X <90° X X // X X // X AX _S E Square Pyramidal	X 11/ X AX y Ez Square Planow	X (1) A X AX3E3	X - A - X (JU) AXE 4 Lincor

- 17. What is the electron geometry and molecular geometry for SF₂?
- a) Tetrahedral, tetrahedral
- b) Linear, linear
- c) Tetrahedral, bent
- d) Trigonal bipyramidal, T-shaped
- e) Trigonal bipyramidal, Linear

4e groups -> AXz Ez tetranedral electronic geometry bent moleculour geometry

23. Draw the molecular orbital diagram for F2.

$$F \qquad \frac{1\sqrt{7}}{17} \qquad F \qquad \frac{1\sqrt{7}}{17} \qquad \frac{1}{7} \qquad \frac{1}{7$$

24. Draw the molecular orbital diagram for C2.

III. O₂ IV F₂ V. B₂ VI. N II. C_2 $I. N_2$

- a) I, II, III, V
- b) I, II, V
- c) I, III, IV V
- d) II, III, 1V
- JIII, IV, VI

26. Draw the MO for NO.

27. How many σ bonds are in this structure?

- a) 25
- **b)**26
- c) 19
- d) 18
- e) 29

28. What are the hybridizations of each C, N, and O atom?

- a) C (all): sp²; O: sp³; N: sp²
- b) C (ring): sp³; C (other): sp²; O: sp²; N: sp³
- c) C (all): sp³; O: sp²; N: sp²
- d)C (ring): sp²; C (other): sp³; O: sp³; N: sp³

29. Which of the following is true about σ bonding and π bonding.

 $\overline{\text{I. A}}$ single bond has 1 σ bond. $\overline{\text{V. A}}$ double bond has 2 σ bonds.

H. A single bond has 1 π bond. W. A triple bond has 3 π bonds.

III. A double bond has 1σ bond and 1π bond. (VII) A triple bond has 1σ and 2π bonds.

0:Sp3 N:Sp3

HV. A double bond has 2π bonds. WHH. A triple bond has 3σ bonds.

- a) II, III, V, VIII
- b)I, III, VII
- c) I, V, VI
- d) II, IV, VIII
- e) I, IV, VI

30. Which hybridization will a molecule with a trigonal bipyramidal electron-group arrangement have?

- a) sp
- b) sp^2
- c) sp^3
- d) sp^3d
- e) sp³d²