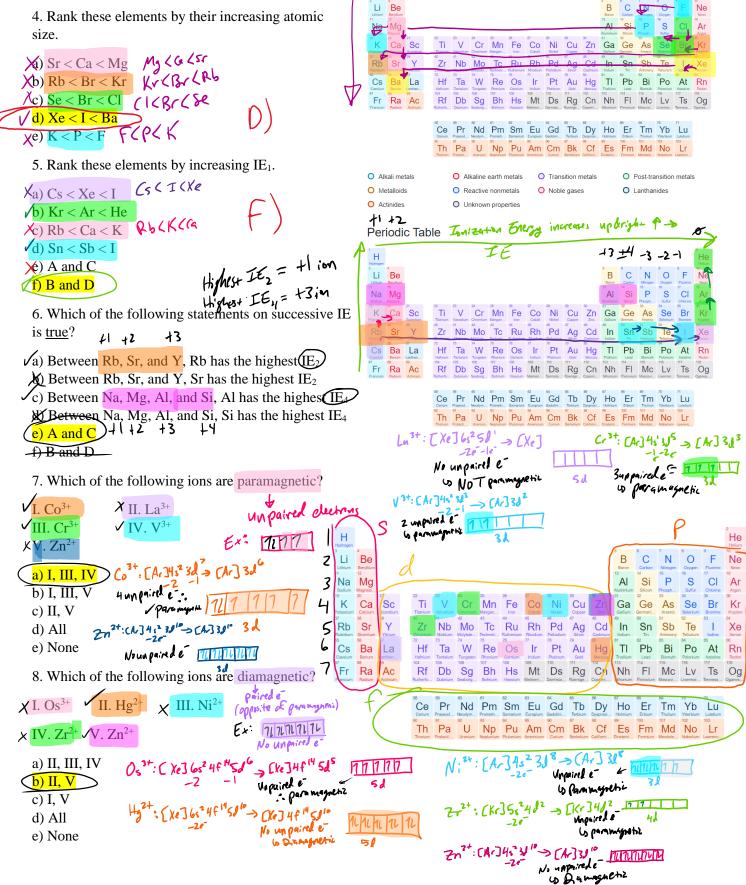

## CHM 2045 Exam 3 Review UF Academic Resources

## ANSWER KEY WITH SOLUTIONS (Zoom in for clarity)

## **Chapter 8: Electron Configuration and Periodic Trends**

1. Which of the following full sets of quantum numbers is incorrect?

a) The e' gained from Br 
$$\rightarrow$$
 Br; n=4, 1=1, m\_{1}=1, m\_{2}=1/2  
b) The outermost e- in Rb; n=5, 1=0, m\_{1}=0, m\_{1}=1/2  
c) The 8<sup>th</sup> e' in O; n=2, 1=0, m\_{1}=0, m\_{2}=1/2  
e) The 8<sup>th</sup> e in O; n=2, 1=0, m\_{1}=0, m\_{2}=1/2  
for 8<sup>th</sup> e' in O; n=2, 1=0, m\_{1}=0, m\_{2}=1/2  
 $for 8th e' in O; n=2, 1=0, m_{1}=0, m_{2}=1/2$   
 $for 8th e' in O; n=2, 1=1, m_{1}=1, m_{2}=1/2$   
 $for 8th e' in O; n=2, 1=0, m_{1}=0, m_{2}=1/2$   
 $for 8th e' in O; n=2, 1=0, m_{1}=0, m_{2}=1/2$   
 $for 8th e' in O; n=2, 1=0, m_{1}=0, m_{2}=1/2$   
 $for 8th e' in O; n=2, 1=0, m_{1}=0, m_{2}=1/2$   
 $for 8th e' in O; n=2, 1=1, m_{1}=1, m_{2}=1/2$   
 $for 8th e' in O; n=2, 1=1, m_{1}=1, m_{2}=1/2$   
 $for 8th e' in O; n=2, 1=1, m_{1}=1, m_{2}=1/2$   
 $for 8th e' in O; n=2, 1=1, m_{2}=1/2, m_{$ 

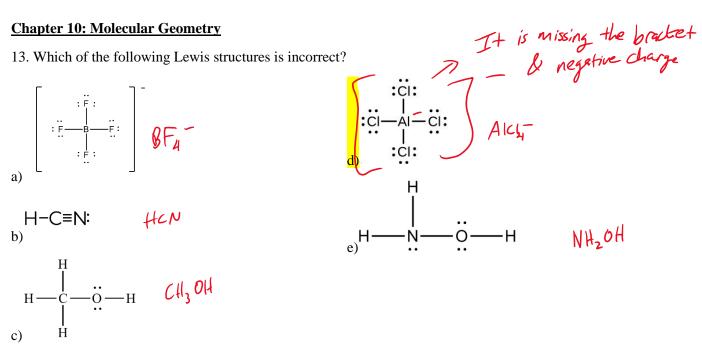



В

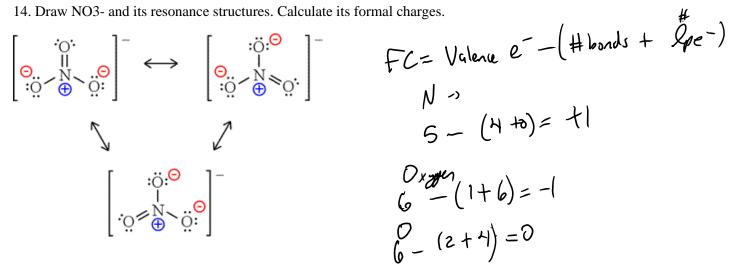
He

Atomic 5:20

4. Rank these elements by their increasing atomic size.




Periodic Table

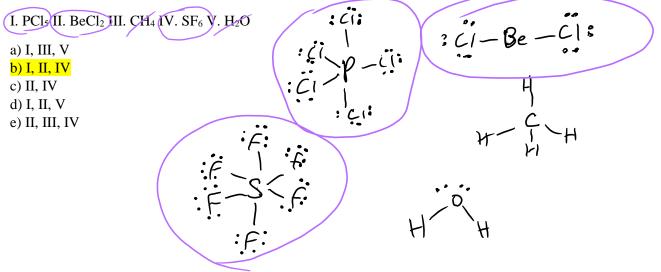

н

## **Chapter 10: Molecular Geometry**

13. Which of the following Lewis structures is incorrect?



14. Draw NO3- and its resonance structures. Calculate its formal charges.




AICL

-H

NHJOH

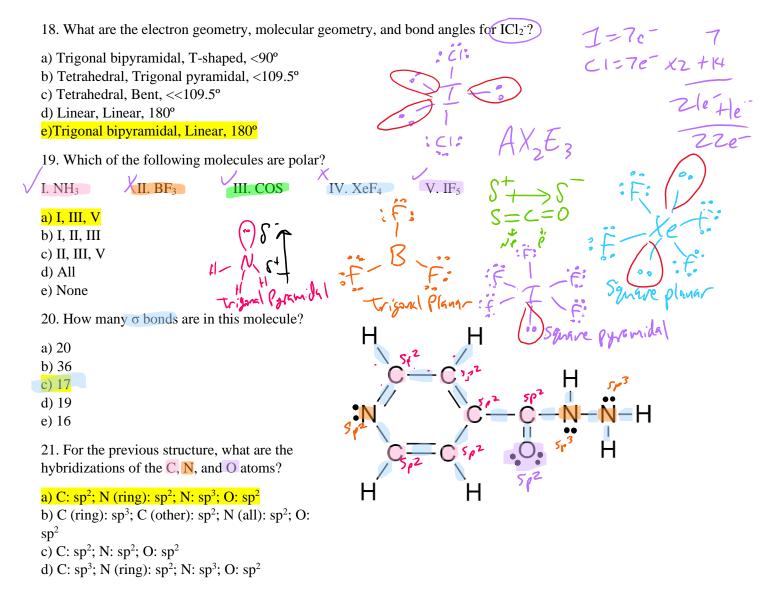
15. Which of the following are exceptions to the octet rule?



| VSEPR Geometries    |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                 |                                                    |                                                  |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------|
| Electron Pairs<br>↓ | 0 Lone Pair                                                                                                                                                                                                                                 | 1 Lone Pair                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 Lone Pairs                                                                    | 3 Lone Pairs                                       | 4 Lone Pairs                                     |
| 2                   | $X \xrightarrow{\text{Linear}} X$                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                 |                                                    |                                                  |
| 3                   | Trigonal Planar<br>120°<br>AX <sub>3</sub> E <sub>0</sub>                                                                                                                                                                                   | Bent<br>$<120^{\circ}$<br>$AX_{2}E_{1}$<br>x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                 |                                                    |                                                  |
| 4                   | Tetrahedral<br>109.5°<br>$AX_{4E_0}$<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X                                                                                                                                                                | Trigonal<br>Pyramidal<br><109.5°<br>AX <sub>3</sub> E <sub>1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bent<br><<109.5°<br>AX <sub>2</sub> E <sub>2</sub>                              |                                                    |                                                  |
| 5                   | Trigonal<br>Bipyramidal<br>90° & 120°<br>AX5E0<br>X5E0                                                                                                                                                                                      | Seesaw<br><90° & <120°<br>AX4E1<br>X<br>X<br>Crue (THE<br>X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T-Shaped<br>$<90^{\circ}$<br>AX <sub>3</sub> E <sub>2</sub><br>x<br>x<br>x<br>x | Linear<br>180°<br>AX <sub>2</sub> E <sub>3</sub>   |                                                  |
| 6                   | Octahedral<br>$90^{\circ}$<br>$AX_{6}E_{0}$<br>$\times$<br>$10^{\circ}$<br>$\times$<br>$10^{\circ}$<br>$\times$<br>$\times$<br>$10^{\circ}$<br>$\times$<br>$\times$<br>$\times$<br>$\times$<br>$\times$<br>$\times$<br>$\times$<br>$\times$ | Square Pyramidal<br><90°<br>AX <sub>5</sub> E <sub>1</sub><br>X (1°)<br>X ( | Square Planar<br>90°<br>AX4E2<br>XAE                                            | T-Shaped<br><90°<br>AX <sub>3</sub> E <sub>3</sub> | Linear<br>180°<br>AX <sub>2</sub> E <sub>4</sub> |

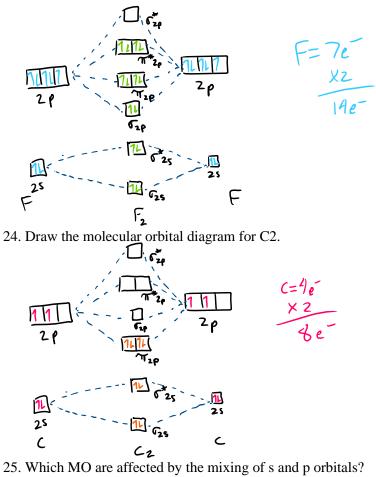
16.VSEPR Theory. Fill in the following chart including the structure, bond angles, shape name, and  $AX_yE_z$  format.

17. What is the electron geometry and molecular geometry for  $SF_2$ ?


a) Tetrahedral, tetrahedral

- b) Linear, linear
- c) Tetrahedral, bent

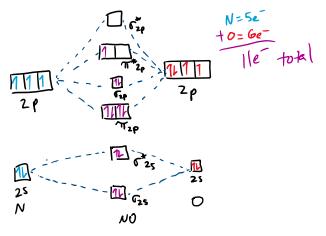
d) Trigonal bipyramidal, T-shaped


e) Trigonal bipyramidal, Linear

for  $SF_2$ ?)  $S = 6e^{-1}$   $6+7(2) = F = 7e^{-1}$   $(e+14=20e^{-1})$ F = F:



22. Which of the following statements is/are likely true:


a) NH<sub>3</sub> should have a higher boiling point than CH<sub>4</sub>  $\rightarrow$  NH<sub>3</sub> has Stronger boding iff-boding b) PH<sub>3</sub> should have a higher boiling point than NH<sub>3</sub>  $\rightarrow$  NH<sub>3</sub> has stronger boding iff-boding c) SO<sub>2</sub> should have a higher boiling point than CO<sub>2</sub>  $\rightarrow$  SO<sub>2</sub> is larger than CO<sub>2</sub> d) A and C e) All of the above 23. Draw the molecular orbital diagram for F2.



By definition, in textsoot

I. N<sub>2</sub> a) I, II, III, V b) I, II, V c) I, III, IV VI d) II, III, IV e) III, IV, VI

26. Draw the MO for NO.



27. How many  $\sigma$  bonds are in this structure?

a) 25

<mark>b) 26</mark>

- c) 19
- d) 18
- e) 29

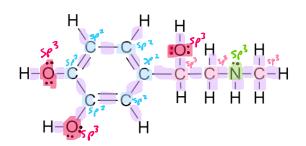
28. What are the hybridizations of each C, N, and O atom?

a) C (all): sp<sup>2</sup>; O: sp<sup>3</sup>; N: sp<sup>2</sup>
b) C (ring): sp<sup>3</sup>; C (other): sp<sup>2</sup>; O: sp<sup>2</sup>; N: sp<sup>3</sup>
c) C (all): sp<sup>3</sup>; O: sp<sup>2</sup>; N: sp<sup>2</sup>
d) C (ring): sp<sup>2</sup>; C (other): sp<sup>3</sup>; O: sp<sup>3</sup>; N: sp<sup>3</sup>

29. Which of the following is true about  $\sigma$  bonding and  $\pi$  bonding.

I. A single bond has  $1 \sigma$  bond.

II. A single bond has  $1 \pi$  bond.


III. A double bond has  $1 \sigma$  bond and  $1 \pi$  bond.

IV. A double bond has  $2 \pi$  bonds.

a) II, III, V, VIII
b) I, III, VII
c) I, V, VI
d) II, IV, VIII
e) I, IV, VI

30. Which hybridization will a molecule with a trigonal bipyramidal electron-group arrangement have?

a) sp
b) sp<sup>2</sup>
c) sp<sup>3</sup>
d) sp<sup>3</sup>d
e) sp<sup>3</sup>d<sup>2</sup>



V. A double bond has  $2 \sigma$  bonds.

VI. A triple bond has  $3\pi$  bonds.

VII. A triple bond has 1  $\sigma$  and 2  $\pi$  bonds.

VIII. A triple bond has  $3 \sigma$  bonds.

AX5E, AXE, AX5E, ...