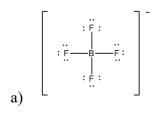
CHM 2045 Exam 3 Review - Spring 2024 - UF Academic Resources

Chapters 9 - 12: This review goes over important concepts needed for your exam but is not exhaustive of everything you need to know and should be used as a supplement (not the sole resource) to your own studying.

1.	Which	of the	following	is the	correct	order f	for inc	reasing	bond	length'


- a) $C \equiv C < C = C < C C$
- b) $C=C < C \equiv C < C-C$
- c) $C-C < C=C < C\equiv C$
- d) $C \equiv C < C C < C = C$
- 2. How are bond length and bond strength related?
- a) Inversely related
- b) Directly related
- c) Length = $\frac{1}{2}$ Strength
- d) Strength = $\frac{1}{2}$ Length

3. Calculate the enthalpy of the reaction:

Given the following bond energies: C-C 347 kJ/mol C-H 413 kJ/mol H-H 432 kJ/mol C=C 614 kJ/mol C-Cl 339 kJ/mol H-Cl 427 kJ/mol C≡C 839 kJ/mol Cl-Cl 243 kJ/mol

- a) -1078 kJ
- b) +168 kJ
- c) -168 kJ
- d) + 563 kJ
- e) -563 kJ

4. Which of the following Lewis structures is incorrect?

5. Draw NO₃ and its resonance structures. Calculate its formal charges.

6. Which of the following are exceptions to the octet rule?

I. PCl_5 II. $BeCl_2$ III. CH_4 IV. SF_6 V. H_2O

- a) I, III, V
- b) I, II, IV
- c) II, IV
- d) I, II, V
- e) II, III, IV

7.VSEPR Theory. Fill in the following chart including the structure, bond angles, shape name, and $AXyE_Z$ format.

VSEPR Geometries

	T	V DET IC O	reometries	T	
Electron Pairs ↓	0 Lone Pair	1 Lone Pair	2 Lone Pair	3 Lone Pair	4 Lone Pair
1					
2					
3					
4					
5					
6					

8. Name to electron geometry, molecular geometry, and bond angles for the following compounds:
a) H_2O
b) ICl ₂
c) SF ₄
d) BeCl ₂
e) CO ₃ ²⁻
9. Which of the following molecules are polar? I. NH ₃ II. BF ₃ III. COS IV. XeF ₄ V. IF ₅
a) I, III, V b) I, II, III
c) II, III, V d) All e) None
c) none

- 10. Which of the following is a nonpolar molecule with polar covalent bonds?
- a) Cl₂
- b) SOCl₂
- c) BeBr₂
- d) NH₃
- e) H₂O
- 11. How many σ bonds are in this molecule?
- a) 20 b) 36 c) 17 d) 19 e) 16

- 12. For the previous structure, what are the hybridizations of the C, N, and O atoms?
- a) C: sp²; N (ring): sp²; N: sp³; O: sp²
- b) C (ring): sp³; C (other): sp²; N (all): sp²; O: sp²
- c) C: sp²; N: sp²; O: sp²
- d) C: sp³; N (ring): sp²; N: sp³; O: sp²
- 13. Which of the following statements is/are likely true:
- a) NH₃ should have a higher boiling point than CH₄
- b) PH₃ should have a higher boiling point than NH₃
- c) SO₂ should have a higher boiling point than CO₂
- d) A and C
- e) All of the above

14. Draw the molecular orbital diagram for F_2 .
15. Draw the molecular orbital diagram for C ₂ .
_
16. Draw the MO for NO.

17. Which of the following is true about σ bonding and π bonding.
I. A single bond has 1 σ bond.
II. A single bond has 1 π bond.
III. A double bond has 1 σ bond and 1 π bond.
IV. A double bond has 2π bonds.
V. A double bond has 2 σ bonds.
VI. A triple bond has 3 π bonds.
VII. A triple bond has 1 σ and 2 π bonds.
VIII. A triple bond has 3 σ bonds.
a) II, III, V, VIII
b) I, III, VII
c) I, V, VI
d) II, IV, VIII
e) I, IV, VI
18. Which hybridization will a molecule with a trigonal bipyramidal electron-group arrangement have? a) sp b) sp ² c) sp ³ d) sp ³ d e) sp ³ d ²
19. According to MO theory, which of the following dicarbon species is expected to have the shortest bond length. Use the following valence MO order: $\sigma_{2s} < \sigma^*_{2s} < \pi_{2py} = \pi_{2pz} < \sigma_{2px} < \pi^*_{2py} = \pi^*_{2pz} < \sigma^*_{2px}$ a) $C_2^{\frac{1}{2}}$ b) $C_2^{\frac{2}{2}}$
-) -2

c) C₂ d) C₂

e) They all have the same length

20. Calculate the heat needed to convert 10.0 g of solid bromine from -7.2°C to 70.0°C. Which of the following steps requires the most heat energy: melting the solid bromine, heating the liquid bromine from its melting point to its boiling point, boiling the bromine, or heating the gaseous bromine from its boiling point to 110.0°C?

Melting point for bromine -7.2° C, heat of fusion for bromine = 66.15 J/g; specific heat of liquid bromine = $0.474 \text{ J/g}^{\circ}$ C; boiling point for bromine = 58.7° C, heat of vaporization for bromine = 193.21 J/g, specific heat of gaseous bromine = $0.225 \text{ J/g}^{\circ}$ C.

- 21. Which response correctly identifies all the interactions that might affect the properties of BF3?
- a) dispersion force, ion-ion interaction
- b) hydrogen bonding force, dispersion force
- c) permanent dipole force
- d) permanent dipole force, dispersion force
- e) dispersion force

- 22. Which response has the following substances arranged in order of increasing boiling point?
- Ar, NaClO₃, H₂O, H₂Se
- A) $NaClO_3 < H_2O < H_2Se < Ar$
- B) $NaClO_3 < H_2Se < H_2O < Ar$
- C) Ar< NaClO₃ < H₂Se < H₂O
- D) $Ar < H_2O < H_2Se < NaClO_3$
- E) Ar< H₂Se < H₂O < NaClO₃
- 23. Which of the following solutions is matched with its correct intermolecular force between solute and solvent?
- A) NH₃ and F₂: hydrogen bonding
- B) CH₂F₂ and CH₂O: dispersion
- C) Cl₂ and PH₃: dipole-induced dipole
- D) HF and NH₃: dipole-dipole
- E) PH₃ and H₂O: dispersion
- 24. A certain metal has a specific gravity of 10.200 at 25° C. It crystallizes in a body-centered cubic arrangement with a unit cell edge length of 3.147Å. Determine the atomic weight, the identity of the metal, and the radius of the atom in Å.