CHM 2045 Exam 3 Review Chapters 9-12 (no solids)

November 10, 2024 6-8pm

Chapter 9

1. Calculate the standard enthalpy of formation for the following reaction. The bond enthalpies are as follows. C—H= 413kJ/mol, Cl—Cl= 243kJ/mol, C—Cl = -339 kJ/mol, H—Cl= -427kJ/mol

$$CH_4 + 3 Cl_2 \rightarrow CHCl_3 + 3HCl$$

- a. -4401 kJ/mol
- b. 936 kJ/mol
- c. 4401 kJ/mol
- d. -936 kJ/mol

- 2. Place the following bonds in order of increasing bond strength
 - S—S S=S S \equiv S a. S—S < S \equiv S \leq S \equiv S b. S \equiv S < S=S < S=S < S=S < S=S <S=S <S=S <S \equiv S <S=S <S \equiv S <S \equiv S <S \equiv S <S=S <S =S <S <S =S <S S =S <S =S <

1 H rystrogen					1	Ato	mic Nur	nber				I	Pub		nem	i I	² He
3 Li Utrust	4 Be			н	Hydrogen		Symbol					5 B	6 C	7 N	8 0	9 F	10 Ne
11 Na sotur	Mg			N	onmetal	Che	mical Gro	oup Block				13 Al Auritum	14 Si 8100	15 P Hosphana Lower	16 S	17 Cl Charler Hager	18 Ar Ar
19 K Formler Vice Vice	20 Ca Caldum	21 Sc Scotter	22 Ti Badan Backet	23 V Verseter	24 Cr Creman Tradicitie	25 Mn	26 Fe	27 CO 20041	28 Ni Ni	29 Cu Cosee	30 Zn 212	31 Ga tetan	32 Ge Serradur	33 As As	34 Se selection terms	35 Br	36 Kr stypeser tanda
37 Rb	38 Sr Section	39 Y	40 Zr 2010	A1 Nb	42 Mo	43 TC	44 Ru Instruction	45 Rh Polar	46 Pd Mater	47 Ag	48 Cd Caletan	49 In	50 Sn	51 Sb Antimory	52 Te	53	54 Xe
55 Cs	56 Ba	•	72 Hf Fairstan	73 Ta	74 W	75 Re	76 OS Comas	77 Ir Hatam	78 Pt	79 Au 	80 Hg	81 TI Tutur	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra		104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 DS	Rg	112 Cn	113 Nh	114 FI	115 MC	116 Lv	117 TS	118 Og
			57 La	58 Ce	59 Pr Praestyrkay	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
			89 AC	90 Th Deter	91 Pa Pa	92 U Umm smi	93 Np	94 Pu Futerber	95 Am	96 Cm	97 Bk	98 Cf Catherine Action	99 Es Estate	100 Fm	101 Md	102 NO	103 Lr uerredus

3. Place the following bonds in order of increasing bond length

 $\begin{array}{ccccc} H - F & H - CI & H - H & H - I \\ a. & H - F < H - CI < H - I < H - H \\ b. & H - H < H - I < H - CI < H - F \\ c. & H - H < H - F < H - CI < H - I \\ d. & H - I < H - CI < H - F < H - H \end{array}$

- 4. Order the following salts in order of increasing lattice energy: Calcium chloride, sodium chloride, potassium chloride, barium chloride
 - a. Calcium chloride < sodium chloride < potassium chloride < barium chloride
 - b. Sodium chloride < potassium chloride < barium chloride < calcium chloride
 - c. Potassium chloride < sodium chloride < calcium chloride < barium chloride
 - d. Potassium chloride < sodium chloride < barium chloride < calcium chloride

5. Draw the Lewis Structure(s) for SO₄²⁻

- 6. Which of the following are exceptions to the octet rule in the central atom? I PCl₅ II. BeCl₂ III. BF₃ IV. NH₃ V. H₂O
 - a. I, II, III
 - b. *I,* II, IV
 - c. II, IV
 - d. I, II, V
 - e. II, III, IV

- 7. Which of the following molecules is polar?
 - a. CH_2Cl_2
 - $b. \ PCI_5$
 - $c. \quad \mathsf{BF}_3$
 - d. XeF₂

- 8. Name the electron geometry, molecular geometry, and bond angles for each of the following bonds.
 - $a. \quad BrF_3$

b. HCN

c. CO₃²⁻

- 9. Which of the following solutions is matched with its correct intermolecular force between solute and solvent?
 - A) CH2F2 and CH2O: dispersion
 - B) Cl2 and PH3: dipole-induced dipole
 - C) HF and NH3: dipole-dipole
 - D) PH3 and H2O: dispersion
- 10. Which of the following has sp² hybridization?
 - a. BF_3
 - b. I₃⁻
 - $c. \quad CO_2$
 - $d. \quad NH_3$

- 11. According to MO theory, which of the following is paramagnetic? MO order: $\sigma_{2s} < \sigma_{2px} < \pi_{2py} = \pi_{2pz} < \pi_{2py} = \pi_{2pz} < \sigma_{2px}$
 - a. O₂
 - $b. \quad O_2^+$
 - c. O₂-
 - d. All of the above

- 12. 19. According to MO theory, which of the following dicarbon species is expected to have the shortest bond length. Use the following valence MO order: $\sigma_{2s} < \sigma_{2s} < \pi_{2py} = \pi_{2pz} < \sigma_{2px} < \pi^{*}_{2py} = \pi^{*}_{2pz} < \sigma^{*}_{2px}$
 - a) C_2^{2+}
 - b) C₂
 - c) C₂²⁻
 - d) C2⁻
 - e) They all have the same length

13. How many sigma and pi bonds are in the molecule below?

14. What are the hybridizations of the three labeled atoms in the following molecule?

15. Rank the following in order of increasing boiling point.

I. CH_2Br_2 II. CH_3CH_2OH III. F_2 IV. CH_4

- a. IV < III < II < I
- b. IV < III < I < II
- c. I < II < IV < III
- d. III < I < II < IV

16. Which of the following has the lowest vapor pressure?

- $a. \quad \mathsf{CH}_4$
- $b. \hspace{0.1in} H_2O$
- $c. \quad CH_2CI_2$
- d. NH₃

17. Which of the following molecules is predicted to have the highest viscosity?

- a. BF₃
- $b. \quad CH_2I_2$
- c. NH₃
- $d. \quad CH_4$

18. Which of the following statements is true?

- a. As temperature increases, viscosity increases.
- b. Vapor pressure increases with increasing intermolecular forces
- c. The stronger intermolecular force, the stronger the surface tension.
- d. Surface tension increases with increasing temperature.
- 19. Calculate the heat needed to convert 10.0 g of solid bromine from -7.2°C to 70.0°C. Which of the following steps requires the most heat energy: melting the solid bromine, heating the liquid bromine from its melting point to its boiling point, boiling the bromine, or heating the gaseous bromine from its boiling point to110.0°C?Melting point for bromine -7.2°C, heat of fusion for bromine = 66.15 J/g; specific heat of liquid bromine = 0.474 J/g°C; boiling point for bromine = 58.7°C, heat of vaporization for bromine =193.21 J/g, specific heat of gaseous bromine = 0.225 J/g°C.