Fall 2024 CHM2045 Exam 2 Review Solutions 1. 2CuHule)+150219) -> 12CO2(9)+ 6H20(9) 1.408 g. 1mol Cutty = 0.0206 mol 78.119 Cutty ST * 4140 gixn + gHu + gcal = 0 9420 + gcal = -91xh 9H20: MCST m= 2.45kg. 1000g = 2450g H20 C= 4,184 Jlyoc AT = TF - T: = 34.852 - 25.720 = 9,132°C 9= 24509 (4,154J) (9,13200) = 93410.31 J A¥ ¥ 9cal = Ccal ST = 923J (9.132°C) = S428.836 J in i 111 11 -91xn = 93410,31 +8428,836 = 102039,145 91XN = - 102039,14J 1KJ =- 102,04KJ 2 0,85 + = HA (P),1 10005 -STET = AH + WE Oble bomb calonmeter has SV = i SE = SH = gixh =-102,04K5 =- 4953.4K5/mol TX 0.081-= HO (MOI H20 0.0206 MOI CUHU DAH = +72.2 KJDF = - 4953 KJ | mol Cutto 12 (9) SH= -1084K

2.
$$q_{Fe} + q_{H_20} = 0$$

 $q_{Fe} = -q_{H_20}$
 $q_{Fe} = -q_{H_20}$
 $q_{Fe} = m_{C_1}(\Delta T)$ = $130g(0.450 J_{1}g^{*c})(\Delta T) = 58.5 \Delta T$
 $q_{H_10} = m_{C_1}(\Delta T)$ = $120g(4.154 J_{1}g^{*c})(\Delta T) = 502.08\Delta T$
 $58.5 \Delta T = -502.08 \Delta T$
 $58.5 \Delta T = -502.08 \Delta T$
 $58.5 \Gamma_{F} - 7020 = -502.08 (T_{F} - 22)$
 $58.5 \Gamma_{F} - 7020 = -502.08 (T_{F} - 11045.76)$
 $500.58 \Gamma_{F} = 18005.76$
 $\Gamma_{F} = 32.23 * C$
3. 2NOCL (g) $\rightarrow N_2$ (g) + 02 (g) $\rightarrow C1_2$ (g)
 $\frac{1}{2}N_2$ (g) $+ \frac{1}{2}O_2$ (g) $\rightarrow N0$ (g) $\Delta H = q_{0.3} \kappa T$
 $\kappa_2 \frac{1}{2}N0$ (g) $\rightarrow N_2$ (g) $+ \frac{1}{2}O_2$ (g) $\Delta H = -90.3 \kappa T$
 $\kappa_2 \frac{1}{2}N0$ (g) $\rightarrow N_2$ (g) $+ \frac{1}{2}O_2$ (g) $\Delta H = -180.6 \kappa T$
 $N0$ (g) $+ \frac{1}{2}O_2$ (g) $\rightarrow NO$ (g) $\Delta H = -180.6 \kappa T$
 $N0$ (g) $+ \frac{1}{2}O_2$ (g) $\rightarrow NO$ (g) $\Delta H = -180.6 \kappa T$
 $\kappa_2 \frac{2}{2}NOC(1) \rightarrow 2NO(2) + \frac{1}{2}O_2$ (g) $\Delta H = -180.6 \kappa T$
 $\kappa_2 \frac{2}{2}NOC(1) \rightarrow 2NO(2) + 02$ (g) $\Delta H = -180.6 \kappa T$
 $\kappa_3 \frac{1}{2}NOC(1) \rightarrow 2NO(2) + 02$ (g) $\Delta H = -180.6 \kappa T$
 $\Lambda = 3\Delta$
 ΔA
 $\Delta A = 3\Delta$
 $\Delta A = -103.4 \kappa T$
 $\Delta H \kappa m = -103.4 \kappa T$

4.
$$\Delta H^{2}m = \frac{2}{3}\Delta H^{2}_{p} prodult - \frac{2}{3}\Delta H^{2}_{p} + ealtants}{= [\frac{2}{3}(\Delta H^{2}_{p} + h^{2}) + 2(\Delta H^{2}_{p} + sol)] - [\frac{2}{3}(\Delta H^{2}_{p} + h^{2})] + \frac{2}{3}(\Delta H^{2}_{p} + h^{2})] = [\frac{2}{3}(-24H^{2}_{p} + h^{2})] + \frac{2}{3}(-24H^{2}_{p} + h^{2})]$$

13 cont¹d
anions
Ca²⁺: [Ar]
All him same e⁻ # so size base On
S²⁻: [Ar]
At protons
Cl⁻: [Ar]
At biggur size)
Ca²⁺ < K^t < Ar < Cl⁻ < S²⁻ (B)
I⁴, IE: energy need to remore 1 election
makes huge jump when take from core shell
Ca² a volume elections
big jump when removing 3¹d election (A)
I5, clection affinity: energy released ito add election

$$X(gas) + c^{-} \rightarrow X^{-}(gas)(A)$$

w) Solid Na need we gas
c) ionization energy (IE)
d) make needs bioken - \$\$ bond form
it would be CE
I6, Attinn - \$\$ bond bioken - \$\$ bond form
(reactant)
(reactant)
H
Final newer: H-c-H + 3 Cl-Cl \rightarrow H-c-Cl + 3 H-Cl
Attinn = [H(c+H) + 3(cl-cl)] - [3(c-cl) + c-H + 3(H-Cl
= [41(410k5) + 3(243k5)] 7 - [3(c-cl) + c-H + 3(H-Cl
= [41(410k5) + 3(243k5)] 7 - [3(c-cl) + c-H + 3(H-Cl
= [41(410k5) + 3(243k5)] 7 - [3(c-cl) + c-H + 3(H-Cl
= [41(410k5) + 3(243k5)] 7 - [3(c-cl) + c-H + 3(H-Cl
= [41(410k5) + 3(243k5)] 7 - [3(c-cl) + c-H + 3(H-Cl
= [41(410k5) + 3(243k5)] 7 - [3(c-cl) + c-H + 3(H-Cl
= [41(410k5) + 3(243k5)] 7 - [3(c-cl) + c-H + 3(H-Cl
= [41(410k5) + 3(243k5)] 7 - [3(c-cl) + c-H + 3(H-Cl
= [41(410k5) + 3(243k5)] 7 - [3(c-cl) + c-H + 3(H-Cl
= [41(410k5) + 3(243k5)] 7 - [3(c-cl) + c-H + 3(H-Cl
= [41(410k5) + 3(243k5)] 7 - [3(c-cl) + c-H + 3(H-Cl
= [41(410k5) + 3(c43k5)] 7 - [3(c-cl) + c-H + 3(H-Cl
= [41(410k5) + 3(c43k5)] 7 - [3(c-cl) + c-H + 3(H-Cl
= [41(410k5) + 3(c43k5)] 7 - [3(c-cl) + c-H + 3(H-Cl
= [41(410k5) + 3(c43k5)] 7 - [3(c-cl) + c-H + 3(H-Cl
= [41(410k5) + 3(c43k5)] 7 - [3(c-cl) + c-H + 3(H-Cl
= [41(410k5) + 3(c43k5)] 7 - [3(c-cl) + c-H + 3(H-Cl
= [41(410k5) + 3(c43k5)] 7 - [3(c-cl) + c-H + 3(H-Cl
= [41(410k5) + 3(c43k5)] 7 - [3(c-cl) + c-H + 3(H-Cl
= [41(410k5) + 3(c43k5)] 7 - [3(c-cl) + c-H + 3(H-Cl
= [41(410k5) + 3(c43k5)] 7 - [3(c-cl) + c-H + 3(H-Cl
= [41(410k5) + 3(c43k5)] 7 - [3(c-cl) + c-H + 3(H-Cl
= [41(410k5) + 3(c43k5)] 7 - [3(c-cl) + c-H + 3(H-Cl
= [41(410k5) + 3(c43k5)] 7 - [3(c-cl) + c-H + 3(H-Cl
= [41(c-H) + c-H) + (c-H) + (c-H) + (c-H) + (c-H) + (

Single bund longest 17 (A)tipu shortest 18. H is smallest ion size 1 as you yo down column, bigger size, longer bond H<F<CI<T H-H < H-F < H-CI + H-I 19. lattice energy base on columb Law of cation-lanion r² (distance) charge product more important than Size chige $Cacl_{2}|(+2)|(-1)| = 2$ Cally vs Bally Naci ((+1)((-1)) = 1 base on size Kai 11/1-11 = 1 smaller ion, more lattice their Bac12 1+211-11 = 2 Bach < Call2 Naci vs KCI Kac < Nacl bigger lesste KCI < Nacl < Bach < Call2