CHM 2045 Fall 2023 Exam 2 Review Academic Resources

1. If 1000 . g of boiling water (at $100^{\circ} \mathrm{C}$) was placed in an $1800 . \mathrm{g}$ cast iron skillet initially at $25^{\circ} \mathrm{C}$, and the final equilibrium temperature of the water and the skillet was $88^{\circ} \mathrm{C}$, estimate the specific heat capacity of the skillet. Assume this is a closed system and that
2. Which statement is incorrect regarding internal energy (U, E) and the first law of thermodynamics?

$$
\Delta E=q+W
$$

A) The first law of thermodynamics states that energy must be conserved.
B) When the system gains heat and performs work, then $\Delta\{\mathrm{U}, \mathrm{E}\}$ for the system must be

C) The first law of thermodynamics does not imply that heat can't be converted to work.
D) When the system loses heat and performs work, then $\Delta\{U, E\}$ for the system must be negative $-q \quad-\omega$

$$
-q-w=-E
$$

E) When its $\Delta\{U, E\}$ increases, then the system must gain heat or have work performed on it, or both.

$$
+E=+q+w
$$

$+w$
by surrounding
on system
3. Deterioration of buildings, bridges, and other structures through the rusting of iron costs millions of dollars a day. The enthalpy of formation of rust, $\mathrm{Fe} 2 \mathrm{O} 3(\mathrm{~s})$, is $-826.0 \mathrm{~kJ} / \mathrm{mol}$. How much heat is released (in kJ) when 0.500 kg of Fe reacts with 200. g of O 2 , forming Fe2O3(s)?

$$
\Delta H_{f}=-826 \mathrm{kt} / \mathrm{mol}
$$

$$
\begin{aligned}
& 2 \mathrm{Fe}(\mathrm{~s})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \\
& .5 \mathrm{~kg} \mathrm{Fe} \rightarrow 500 \mathrm{gre} \cdot \frac{1 \mathrm{molFe}}{55.85 \mathrm{gle}} \cdot \frac{1 \mathrm{~mol} \mathrm{Fe}}{2} \mathrm{O} \mathrm{O}_{3}=4.476 \mathrm{~mol} \mathrm{Fe} \mathrm{me}_{2} \mathrm{O}_{3} \\
& 200 \mathrm{~g} \mathrm{O}_{2} \cdot \frac{1 \mathrm{~mol} \mathrm{O}_{2}}{32 \mathrm{~g}} \cdot \frac{1 \mathrm{~mol}_{2} \mathrm{O}_{3}}{\frac{3}{2} \mathrm{molO}_{2}}=\frac{4.167 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}}{\forall} \\
& \rightarrow \Delta H=\frac{9}{n} \quad \Delta H \cdot n=q \quad-826 \mathrm{~kJ} / \mathrm{mol} \cdot 4.167 \mathrm{~mol} \mathrm{fe} \mathrm{O}_{3}=-3442 \mathrm{~kJ}
\end{aligned}
$$

$$
\begin{aligned}
& \text { the specific heat capacity of water is } 4.184 \mathrm{~J} /{ }^{\circ} \mathrm{C} \cdot \mathrm{~g} \text {. } \\
& m_{w}=1000 \mathrm{~g} m_{c}=1800 \mathrm{~g} \\
& \begin{array}{c}
a_{\text {water }}+a_{\text {skillet }}=0 \\
-a_{\text {water }}=q_{\text {skillet }}
\end{array} \\
& q=m c \Delta T \\
& \Delta T=T_{f}-T_{i} \\
& T_{i, \omega}=100^{\circ} \mathrm{C} \quad T_{i c}=25^{\circ} \mathrm{C} \\
& T_{f}=88^{\circ} \mathrm{C} \\
& C_{W}=4.184 \frac{1}{\circ} \quad C_{c g}=? \\
& +\left(1000 g \cdot 4.184 \frac{1}{x g} \cdot\left(\frac{88^{\circ} \mathrm{c}-100 \%}{+12}\right)=1800 \mathrm{~g} \cdot x \cdot\left(89^{\circ} \mathrm{C}-25^{\circ} \mathrm{c}\right)\right.
\end{aligned}
$$

4. When 50.0 ml of 0.200 M AgNO 3 and 50.0 ml of 0.100 M CaCl 2 , both $25.0^{\circ} \mathrm{C}$ are reacted in a coffee-cup calorimeter, the temperature of the reacting mixture increases to 26. $0^{\circ} \mathrm{C}$. Calculate $\Delta \mathrm{H}$ in kJ per mole of AgCl produced. Assume the density of the solution is $1.05 \mathrm{~g} / \mathrm{mT}$ and the specific heat capacity of the solution $4.20 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C} . \rightarrow \mathrm{C}$

$$
2 \mathrm{AgNO}_{3}(a q)+\mathrm{CaCl}_{2}(a q) \rightarrow 2 \mathrm{AgCl}+{\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}}^{0}
$$

$$
\begin{aligned}
& \frac{.2 \mathrm{~mol}^{2 g N o} 3}{14} \cdot .054 \cdot \frac{2 \mathrm{~mol} \mathrm{AgCl}^{2}}{2 \mathrm{~mol} \mathrm{AgNO}_{3}}=.01 \mathrm{~mol} \mathrm{AgCl} \quad \Delta H=\frac{9}{n}=\frac{441 \mathrm{~J}}{.01 \mathrm{~mol}} \\
& \frac{.1 \text { mol cycle }}{14} \cdot .054 \cdot \frac{2 \mathrm{~mol} \mathrm{AgCl}}{\text { mol }}=.01 \mathrm{~mol} \mathrm{AgCl} \quad q=\mathrm{mc} \mathrm{\Delta t} \quad=44,100 \mathrm{y}_{\mathrm{mol}} \\
& \begin{aligned}
& 1 \mathrm{morCaCl}_{2} \\
& q=(105 \mathrm{~g}) \cdot\left(4 \cdot 20 \frac{\downarrow}{\frac{1}{2}^{2}}\right)\left(1^{\circ} \mathrm{C}\right. \\
&=441 \mathrm{~T}
\end{aligned} \\
& m_{S}=100 \mathrm{~mL} \cdot \frac{1.05 \mathrm{~g}}{\mathrm{~mL}}=105 \mathrm{~g} \\
& \Delta T=26{ }^{\circ} \mathrm{C}-25^{\circ} \mathrm{Cl}=1^{\circ} \mathrm{C}
\end{aligned}
$$

5. A pure gold ring $\left(\mathrm{C}=0.128 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\right)$ and pure silver ring $\left(\mathrm{C}=0.235 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\right)$ have a total mass of 15.3 g . The two rings are heated to $62.1^{\circ} \mathrm{C}$ and dropped into a 13.1 mL of water (ρ $=1.00 \mathrm{~g} / \mathrm{mL}$ and $\mathrm{C}=4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$) at $20.9^{\circ} \mathrm{C}$. When equilibrium is reached, the temperature of the water is $22.9^{\circ} \mathrm{C}$. What was the mass of the gold ring?

$$
\begin{aligned}
& m_{S}+m_{g}=15.3 \mathrm{~g} \quad m_{S}=15.3 g-m g q_{\text {silver }}+q_{\text {gold }}+q_{\text {water }}=0 \quad q=m c \Delta T \\
& \Delta T_{m}=22.9^{\circ} \mathrm{C}-62.1^{\circ} \mathrm{C}=\frac{-39.20}{q_{s}}+q_{g}=-q_{w} \\
& \Delta T_{w}=22.9^{\circ}\left(-20.9^{\prime}\left(\mathrm{m}_{s} \cdot 0.235 \frac{1}{\mathrm{~g}^{\circ} \cdot} \cdot-39.2 \mathrm{C}\right)^{\omega}+\left(\mathrm{mg}^{\circ} \cdot 0.12 g_{g^{\circ} \mathrm{C}} \cdot 39.2^{\circ} \mathrm{C}\right)=-\left(13.1 \mathrm{~g} \cdot 4.184 \frac{1}{\mathrm{~g} \cdot \mathrm{c}}\right.\right. \\
& (15.3 g-m g)-9.212 \frac{1}{\mathrm{~g}}-m g \cdot 5.0176=-109.62 \mathrm{~J} \\
& \begin{array}{l}
-140.04 \\
+140.94
\end{array}+\frac{9.212 \frac{1}{g} \cdot m g-5.012 m_{g}}{-109.62}+140.94 \quad \frac{4.2 m_{g}}{4.2}=\frac{31.32 \mathrm{~J}}{4.2} \\
& \text { 6. Find the heat of formation of gaseous } \mathrm{HCl} \\
& m g=7.46 \mathrm{~g} \\
& \text { (I) } \frac{1}{2}(\mathrm{~N} 2(\mathrm{~g})+3 \mathrm{H} 2(\mathrm{~g}) \xrightarrow{\leftarrow} 2 \mathrm{NH} 3(\mathrm{~g})) \quad \Delta \mathrm{H}_{2}^{\prime}(\mathrm{t} 91.8 \mathrm{~kJ}) \underset{\mathrm{NH}_{3}}{\rightarrow} \frac{1}{2} \mathrm{H}_{2}+\underline{\frac{3}{2} \mathrm{H}_{2}} \\
& \text { (II) } \left.\left.\frac{1}{2} \mathrm{~N} 2(\mathrm{~g})+4 \mathrm{H} 2(\mathrm{~g})+\mathrm{Cl} 2(\mathrm{~g}) \rightarrow 2 \mathrm{NH} 4 \mathrm{Cl}(\mathrm{~s})\right) \quad \Delta \mathrm{H} \frac{1}{2}(-628.8 \mathrm{~kJ}) \frac{1}{2} \mathrm{NO}_{2}+2 \mathrm{H}_{2}+\frac{1}{2} \mathrm{Cl}_{2} \rightarrow \mathrm{NH}_{1} \mathrm{CHOs}\right) \\
& \star(\text { III }) \mathrm{NH} 3(\mathrm{~g})+\mathrm{HCl}(\mathrm{~g}) \rightarrow \mathrm{NH} 4 \mathrm{Cl}(\mathrm{~s}) \\
& \Delta \mathrm{H}=+176.2 \mathrm{~kJ} \quad \mathrm{NH}_{4} \mathrm{fi}(\mathrm{ST}) \rightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{~g})
\end{aligned}
$$

$$
\begin{gathered}
\Delta H_{f}=\frac{1}{2}(91.8 \mathrm{kT})-\frac{1}{2}(628.8)+176.2 \quad \frac{1}{2} H_{2}(g)+\frac{1}{2} \mathrm{Cl},(g) \rightarrow H C I(g) \\
=-92.3 \mathrm{~kJ}
\end{gathered}
$$

7. Consider the reaction

$$
\mathrm{C} 12 \mathrm{H} 22 \mathrm{O} 11(\mathrm{~s})+12 \mathrm{O} 2(\mathrm{~g}) \rightarrow 12 \mathrm{CO} 2(\mathrm{~g})+11 \mathrm{H} 2 \mathrm{O}(\mathrm{l})
$$

in which 10.0 g of sucrose, C 12 H 22 O 11 , was burned in a bomb calorimeter with a heat capacity of $7.50 \mathrm{~kJ} / \circ \mathrm{C}$. The temperature increase inside the calorimeter was found to be $22.0^{\circ} \mathrm{C}$. What is the heat pf this reaction per mole of sucrose?

$$
q=n c \cdot \Delta r
$$

$$
\begin{aligned}
& \Delta T=22 \cdot c \\
& \Delta H=\frac{9}{n}
\end{aligned}
$$

$$
\frac{.165 \mathrm{~kJ}}{.0292 \mathrm{mal}}=-5650 \mathrm{~kJ} / \mathrm{mat}
$$

8. For each of the following orbital shapes below, give the maximum number of electrons that can be accommodated in the orbitals that share the same principal quantum number, n, and angular quantum number, l.

A) 4,2 B) 6,2 C

$$
\text { C) } 5,3 \mathrm{D}
$$

D) $10,6 \mathrm{E}$
9. Which of the following full sets of quantum numbers is incorrect?
a) The e^{-}gained from $\mathrm{Br} \rightarrow \mathrm{Br}^{-} ; n=4,1=1, m_{l}=+1, m_{s}=-1 / 2$ row $4 n=4$
b) The outermost e- in $\mathrm{Rb} ; \mathrm{n}=5, \mathrm{l}=0, \mathrm{~m}_{1}=0, \mathrm{~m}_{\mathrm{s}}=+1 / 2$

$$
+\frac{\downarrow}{2},-\frac{1}{2}
$$

(c) The $6^{\text {th }} \mathrm{e}^{-}$in $\mathrm{O} ; \mathrm{n}=2,1=0, \mathrm{~m}_{\mathrm{l}}=0, \mathrm{~m}_{\mathrm{s}}=+1 / 2 \boldsymbol{\chi}$
d) The $3^{\text {rd }} \mathrm{e}^{-}$in $\mathrm{F} ; \mathrm{n}=2, \mathrm{l}=0, \mathrm{~m}_{\mathrm{l}}=0, \mathrm{~m}_{\mathrm{s}}=+1 / 2$
e) The $8^{\text {th }} \mathrm{e}$ - in $\mathrm{O} ; \mathrm{n}=2, \mathrm{l}=1, \mathrm{~m}_{1}=-1, \mathrm{~m}_{\mathrm{s}}=-1 / 2$

$$
\begin{array}{ll}
-1 & 0+1 \\
\downarrow & n=2 \quad l=1 \\
m_{1}=-1 & m_{5}=-1 / 2
\end{array}
$$

$$
\begin{aligned}
& 0: \text { if } \text { it }_{2}
\end{aligned}
$$

$$
\begin{aligned}
& n=2 \quad m_{l}=0 \\
& \begin{array}{lll}
l=0 & m_{s}=+1 / 2
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& R b: n=5 \quad l=0 \quad 5 s \neq \\
& m_{l}=0 \quad m_{s}=+1 / 2 \\
& +\ell \rightarrow-\ell
\end{aligned}
$$

$$
\begin{aligned}
& \text { E) } 14,10 d:{ }^{n+10}-1: f^{* 00}=n \\
& \ell \rightarrow S=0 ; p=1 ; d=2 ; f=3 \\
& m_{l \rightarrow+l \rightarrow-l}
\end{aligned}
$$

10. Which of the following electron configurations are correct?
a) I, III, V
b) II, IV
c) I, II, V
$A v:[x e]^{*} 6 s^{2} 4 f^{\prime 4} 5 d^{9}$ *
[xe] $6 s^{\prime} 4 f^{\prime 4} 5 d^{10}$
d) None
e) All

$\mathrm{Hg}:[x e] \operatorname{bs}^{2} 4 f^{14} 5 d^{10}$ $M_{0}:\left[k_{1}\right] 5 s^{2} 4 d^{4}$ *
$[k r] 5 s^{\prime} 4 d^{5}$ $\mathrm{Cr}:[\mathrm{Arr}]^{4 s^{2} 3 d^{4} *}$
[AT] $4 s^{1} 30^{5}$
11. Which of the following electron configurations for these ions are correct?

a) All $\left.\mathrm{C}_{4}:\left[A_{r}\right]\right]^{2}$
b) I, V $\rightarrow\left[A_{1}\right]$
c) II, IV, V

$$
\mathrm{Cr}^{3+}:\left[\begin{array}{cl}
\\
0
\end{array}\right] 4 s^{\top} 3 d^{5}
$$

$$
\rightarrow\left[A_{i}\right]
$$

d) III, V

$$
\mathrm{V}^{3+}:\left[A_{r}\right] s^{2} 3 d^{3}
$$

e) II, III, IV
[Ar] Sd

$$
s^{2}[\mathrm{Ne}] 3 s^{3} 4 p^{6}
$$

12. Which of these are in the correct increasing atomic size order?

inc
$\mathrm{Mg}<\mathrm{Ca}<\mathrm{Sr}$
b) $\mathrm{Rb}<\mathrm{Br}<\mathrm{KrX}$
c) $\mathrm{Se}<\mathrm{Br}<\mathrm{Cl}_{\boldsymbol{X}}$

13. Which of these are in the correct order for increasing $I E_{1}$. Ionization energy
noble gas
a) $\mathrm{Cs}<\mathrm{Xe}<\mathrm{I}$
b) $\mathrm{Kr}<\overline{\mathrm{Ar}<\mathrm{He}}$

d) $\mathrm{Sn}<\mathrm{Sb}<\mathrm{I} \quad \mathrm{Sn}<\mathrm{Sb}<1$
e) A and C
f) B and D

14．Which of the following statements on successive JE is true？

c）Between $\mathrm{Na}, \mathrm{Mg}, \mathrm{Al}$ ，and Si, Al has the highest EE_{4}
d）Between $\mathrm{Na}, \mathrm{Mg}, \mathrm{Al}$ ，and Si, Si has the $\boldsymbol{\chi}_{\text {g hest }} \mathrm{IE}_{4}$
e）A and C
f）B and D
AI

$R_{b}: y_{s}$
S：施

unpoised eve tons
\uparrow all paired erections
15．Label the following ions paramagnetic or diamagnetic．\rightarrow full orbitals

II． $\mathrm{Hg}^{2+}[\mathrm{Xe}] \operatorname{cs}^{2} 4 f^{44} 3 d^{\circ}$

化 H HHH TH diamagnetic
16．Which ions are ranked correctly by decreasing size？
I． $\mathrm{Sr}^{2+}>\mathrm{Ca}^{2+}>\mathrm{Mg}^{2+} \quad$ II．$\stackrel{\mathrm{S}^{2-}}{\boldsymbol{\sim}}>\mathrm{Cl}^{-}>\mathrm{K}^{+} \quad \underset{\text { III．} \mathrm{Mg}^{2+}>\mathrm{Na}^{+}>\mathrm{F}^{-}}{\text {IV．} \mathrm{Ba}^{2+}>\mathrm{C}^{+}>\mathrm{I}^{-}}$
X $\begin{aligned} & \text { III．} \mathrm{Mg}^{2+}>\mathrm{Na}^{+}>\mathrm{F}^{-} \quad \text { IV．} \mathrm{Ba}^{2+}>\mathrm{XS}^{+}> \\ & \quad \text { cations anions } \quad \downarrow\end{aligned}$

a）I，III，V	$\frac{\mathrm{mag}}{\mathrm{ca}} \mathrm{s}$	$18^{e^{-}}$	$18^{e^{-}}$
	$18 e^{\circ}$		

b）II，IV
c）I，II，V
d）I，IV，V
e）II，III，IV，V

17．Which of the following is the correct order for increasing bond length？
$\mathrm{C}-\mathrm{C}, \mathrm{C}=\mathrm{C}, \mathrm{C} \equiv \mathrm{C}$
a） $\mathrm{C} \equiv \mathrm{C}<\mathrm{C}=\mathrm{C}<\mathrm{C}-\mathrm{C}$

$$
C \equiv C<C=C<C-C
$$

b） $\mathrm{C}=\mathrm{C}<\mathrm{C} \equiv \mathrm{C}<\mathrm{C}-\mathrm{C}$
c） $\mathrm{C}-\mathrm{C}<\mathrm{C}=\mathrm{C}<\mathrm{C} \equiv \mathrm{C}$
d） $\mathrm{C} \equiv \mathrm{C}<\mathrm{C}-\mathrm{C}<\mathrm{C}=\mathrm{C}$
18. How are bond length and bond strength related?
a) Inversely related
as bond length \uparrow bond strength \downarrow
b) Directly related
c) Length $=1 / 2$ Strength
d) Strength $=1 / 2$ Length
19. Calculate the enthalpy of the reaction:

$$
\mathrm{C}_{2} \mathrm{H}_{4(g)}+\mathrm{Cl}_{2(g)} \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2(g)}
$$

Given the following bond energies:

C-C $347 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{C}=\mathrm{C} 614 \mathrm{~kJ} / \mathrm{mol}$ C $\equiv \mathrm{C} 839 \mathrm{~kJ} / \mathrm{mol}$
a) -1078 kJ
b) +168 kJ
c) -168 kJ
d) +563 kJ
e) -563 kJ

H-H $432 \mathrm{~kJ} / \mathrm{mol}$ $\mathrm{H}-\mathrm{Cl} 427 \mathrm{~kJ} / \mathrm{mol}$

$$
4(C-H) 2(c-1)
$$

bonds broken - bonds formed
reactants - products

$$
\begin{gathered}
(4.413+1.614+1.243)-(4.413+2.339+1.347) \\
=-168 \mathrm{KJ}
\end{gathered}
$$

