CHM 2045 Exam 2 Review
 Academic Resources

1) If $1000 . \mathrm{g}$ of boiling water (at $100^{\circ} \mathrm{C}$) was placed in an $1800 . \mathrm{g}$ cast iron skillet initially at $25^{\circ} \mathrm{C}$, and the final equilibrium temperature of the water and the skillet was $88^{\circ} \mathrm{C}$, estimate the specific heat capacity of the skillet. Assume this is a closed system and that the specific heat capacity of water is $4.184 \mathrm{~J} /{ }^{\circ} \mathrm{C} \cdot \mathrm{g}$.
2) Which statement is incorrect regarding internal energy (U, E) and the first law of thermodynamics?
A) The first law of thermodynamics states that energy must be conserved.
B) When the system gains heat and performs work, then $\Delta\{\mathrm{U}, \mathrm{E}\}$ for the system must be positive.
C) The first law of thermodynamics does not imply that heat can't be converted to work.
D) When the system loses heat and performs work, then $\Delta\{\mathrm{U}, \mathrm{E}\}$ for the system must be negative.
E) When its $\Delta\{\mathrm{U}, \mathrm{E}\}$ increases, then the system must gain heat or have work performed on it, or both.
3) Deterioration of buildings, bridges, and other structures through the rusting of iron costs millions of dollars a day. The enthalpy of formation of rust, $\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$, is $-826.0 \mathrm{~kJ} / \mathrm{mol}$. How much heat is released (in kJ) when 0.500 kg of Fe reacts with 200 g of O_{2}, forming $\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$?
4) When 50.0 ml of $0.200 \mathrm{M} \mathrm{AgNO}_{3}$ and 50.0 ml of $0.100 \mathrm{M} \mathrm{CaCl}_{2}$, both at $25.0^{\circ} \mathrm{C}$, are reacted in a coffee-cup calorimeter, the temperature of the reacting mixture increases to $26.0^{\circ} \mathrm{C}$. Calculate $\Delta \mathrm{H}$ in kJ per mole of AgCl produced. Assume the density of the solution is $1.05 \mathrm{~g} / \mathrm{ml}$ and the specific heat capacity of the solution $4.20 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$.
5) The rate law for $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$ was experimentally determined to be rate $=\mathrm{k}[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]$. Based on this information, which of the following are plausible mechanisms for this reaction?
\(\left.\begin{array}{|ll|}\hline I: \& 2 \mathrm{NO}(\mathrm{g}) \rightleftarrows \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) (slow equilibrium step)

\& \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g}) (fast second step)\end{array}\right]\)| II: | $2 \mathrm{NO}(\mathrm{g}) \rightleftarrows \mathrm{N}_{2} \mathrm{O}_{2}(\mathrm{~g})$ (fast equilibrium step) |
| :--- | :--- |
| | $\mathrm{N}_{2} \mathrm{O}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$ (slow second step) |

A) Only I
B) Only II
C) I and III
D) II and III
E) I, II, and III
6) The growth of Pseudomonas bacteria is a first-order process with rate constant $\mathrm{k}=0.035$ $\min ^{-1}$ at $37^{\circ} \mathrm{C}$. The time it takes to approximately double the population of these bacteria at $37^{\circ} \mathrm{C}$ is
7) If 150 . grams of iron $\left(0.450 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\right)$ at $100^{\circ} \mathrm{C}$ is combined with 150 . grams of water (4.184 $\mathrm{J} / \mathrm{g}^{\circ} \mathrm{C}$) at $20^{\circ} \mathrm{C}$ in an insulated container, what will be the final temperature of the water?
8) Find the heat of formation of gaseous HCl
(I) $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$
$\Delta \mathrm{H}=-91.8 \mathrm{~kJ}$
(II) $\mathrm{N}_{2(\mathrm{~g})}+4 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{s})}$
$\Delta \mathrm{H}=-628.8 \mathrm{~kJ}$
(III) $\mathrm{NH}_{3(\mathrm{~g})}+\mathrm{HCl}_{(\mathrm{g})} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{s})}$
$\Delta \mathrm{H}=-176.2 \mathrm{~kJ}$
9) A pure gold ring $\left(\mathrm{C}=0.128 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\right)$ and pure silver ring $\left(\mathrm{C}=0.235 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\right)$ have a total mass of 15.3 g . The two rings are heated to $62.1^{\circ} \mathrm{C}$ and dropped into a 13.1 mL of water (ρ $=1.00 \mathrm{~g} / \mathrm{mL}$ and $\mathrm{C}=4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$) at $20.9^{\circ} \mathrm{C}$. When equilibrium is reached, the temperature of the water is $22.9^{\circ} \mathrm{C}$. What was the mass of the gold ring?
10) Consider the reaction

$$
\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(\mathrm{~s})+12 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 12 \mathrm{CO}_{2}(\mathrm{~g})+11 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

in which 10.0 g of sucrose, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$, was burned in a bomb calorimeter with a heat capacity of $7.50 \mathrm{~kJ} / \circ \mathrm{C}$. The temperature increase inside the calorimeter was found to be $22.0^{\circ} \mathrm{C}$. What is the heat of this reaction per mole of sucrose?
11) Find the rate law for the following reaction mechanism
(I) $\quad \mathrm{HNO}_{2}+\mathrm{H}^{+} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{NO}^{+}$(fast)
(II) $\mathrm{NH}_{4}^{+} \rightarrow \mathrm{NH}_{3}+\mathrm{H}^{+}$(fast)
(III) $\mathrm{NO}^{+}+\mathrm{NH}_{3} \rightarrow \mathrm{NH}_{3} \mathrm{NO}^{+}$(slow)
(IV) $\mathrm{NH}_{3} \mathrm{NO}^{+} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{H}^{+}+\mathrm{N}_{2}$ (fast)
A) Rate $=k\left[\mathrm{NO}^{+}\right]\left[\mathrm{NH}_{3}\right]$
B) Rate $=\mathrm{k}\left[\mathrm{NO}^{+}\right]\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{H}^{+}\right]^{-1}$
C) Rate $=\mathrm{k}\left[\mathrm{NO}^{+}\right]\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{H}^{+}\right]$
D) Rate $=\mathrm{k}\left[\mathrm{HNO}_{2}\right]\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]^{-1}$
E) Rate $=\mathrm{k}\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}^{+}\right]\left[\mathrm{HNO}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]^{-1}$
12) A red laser emits pulses of 679 nm and $0.528 \mathrm{~J} /$ pulse. How many photons are produced per pulse?
13) Given the following data, choose the correct expression for the rate law:
$\mathrm{BrO}_{3}{ }^{-}(\mathrm{aq})+5 \mathrm{Br}^{-}(\mathrm{aq})+6 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 3 \mathrm{Br}_{2}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}$ (1)

$\mathbf{E x p}$	$\left[\mathbf{B r O}_{3}\right] \mathbf{(M)}$	$\left[\mathbf{B r}^{-}\right] \mathbf{(M)}$	$\left[\mathbf{H}^{+}\right](\mathbf{M})$	Rate $(\mathbf{M} / \mathbf{s})$
$\mathbf{1}$	0.175	0.175	0.175	1.126×10^{-2}
$\mathbf{2}$	0.350	0.175	0.175	2.251×10^{-2}
$\mathbf{3}$	0.175	0.525	0.175	3.376×10^{-2}
$\mathbf{4}$	0.350	0.175	0.263	5.084×10^{-2}

(1) $\left.\mathrm{k}^{2} \mathrm{BrO}_{3}^{-}\right]^{1 / 2}\left[\mathrm{Br}^{-}\right]\left[\mathrm{H}^{+}\right]$
(2) $\mathrm{k}\left[\mathrm{BrO}_{3}^{-}\right]\left[\mathrm{Br}^{-}\right]\left[\mathrm{H}^{+}\right]^{1 / 2}$
(3) $\mathrm{k}\left[\mathrm{BrO}_{3}^{-}\right]\left[\mathrm{Br}^{-}\right]^{1 / 2}\left[\mathrm{H}^{+}\right]^{2}$
(4) $\mathrm{k}\left[\mathrm{BrO}_{3}{ }^{-}\right]\left[\mathrm{Br}^{-}\right]\left[\mathrm{H}^{+}\right]^{2}$
(5) $\mathrm{k}\left[\mathrm{BrO}_{3}^{-}\right]\left[\mathrm{Br}^{-}\right]\left[\mathrm{H}^{+}\right]$

