CHM 2045 Exam 2 Review Academic Resources

- If 1000. g of boiling water (at 100 °C) was placed in an 1800. g cast iron skillet initially at 25°C, and the final equilibrium temperature of the water and the skillet was 88°C, estimate the specific heat capacity of the skillet. Assume this is a closed system and that the specific heat capacity of water is 4.184 J/°C•g.
- 2) Which statement is incorrect regarding internal energy (U, E) and the first law of thermodynamics?
 - A) The first law of thermodynamics states that energy must be conserved.
 - B) When the system gains heat and performs work, then Δ {U, E} for the system must be positive.
 - C) The first law of thermodynamics does not imply that heat can't be converted to work.
 - D) When the system loses heat and performs work, then Δ {U, E} for the system must be negative.
 - E) When its Δ {U,E} increases, then the system must gain heat or have work performed on it, or both.
- 3) Deterioration of buildings, bridges, and other structures through the rusting of iron costs millions of dollars a day. The enthalpy of formation of rust, Fe₂O₃(s), is -826.0 kJ/mol. How much heat is released (in kJ) when 0.500 kg of Fe reacts with 200. g of O₂, forming Fe₂O₃(s)?
- 4) When 50.0 ml of 0.200 M AgNO₃ and 50.0 ml of 0.100 M CaCl₂, both at 25.0°C, are reacted in a coffee-cup calorimeter, the temperature of the reacting mixture increases to 26.0°C. Calculate Δ H in kJ per mole of AgCl produced. Assume the density of the solution is 1.05 g/ml and the specific heat capacity of the solution 4.20 J/g°C.

5) The rate law for 2 NO(g) + O₂(g) → 2 NO₂(g) was experimentally determined to be rate = k[NO]²[O₂]. Based on this information, which of the following are plausible mechanisms for this reaction?

I:	$2 \text{ NO}(g) \rightleftharpoons N_2(g) + O_2(g) \text{ (slow equilibrium step)}$
	$N_2(g) + 2 O_2(g) \rightarrow 2 NO_2(g)$ (fast second step)
II:	2 NO(g) \rightleftharpoons N ₂ O ₂ (g) (fast equilibrium step)
	$N_2O_2(g) + O_2(g) \rightarrow 2 NO_2(g)$ (slow second step)
III:	$2 \operatorname{NO}(g) + \operatorname{O}_2(g) \rightarrow 2 \operatorname{NO}_2(g) \text{ (one step)}$

B) Only IIC) I and IIID) II and IIIE) I, II, and III

A) Only I

- 6) The growth of Pseudomonas bacteria is a first-order process with rate constant k = 0.035 min⁻¹ at 37°C. The time it takes to approximately double the population of these bacteria at 37°C is
- 7) If 150. grams of iron (0.450 J/g°C) at 100°C is combined with 150. grams of water (4.184 J/g°C) at 20°C in an insulated container, what will be the final temperature of the water?

8) Find the heat of formation of gaseous HCl

(I) $N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}$	$\Delta H = -91.8 \text{ kJ}$
(II) $N_{2(g)} + 4H_{2(g)} + Cl_{2(g)} \rightarrow 2NH_4Cl_{(s)}$	$\Delta H = -628.8 \text{ kJ}$
(III) $NH_{3(g)} + HCl_{(g)} \rightarrow NH_4Cl_{(s)}$	$\Delta H = -176.2 \text{ kJ}$

9) A pure gold ring (C = 0.128 J/g°C) and pure silver ring (C = 0.235 J/g°C) have a total mass of 15.3g. The two rings are heated to 62.1°C and dropped into a 13.1mL of water (ρ = 1.00 g/mL and C = 4.184 J/g°C) at 20.9°C. When equilibrium is reached, the temperature of the water is 22.9°C. What was the mass of the gold ring?

10) Consider the reaction

$$C_{12}H_{22}O_{11}(s) + 12O_2(g) \rightarrow 12CO_2(g) + 11H_2O(l)$$

in which 10.0 g of sucrose, $C_{12}H_{22}O_{11}$, was burned in a bomb calorimeter with a heat capacity of 7.50 kJ/oC. The temperature increase inside the calorimeter was found to be 22.0°C. What is the heat of this reaction per mole of sucrose?

11) Find the rate law for the following reaction mechanism

- (I) $HNO_2 + H^+ \rightarrow H_2O + NO^+$ (fast)
- (II) $NH_4^+ \rightarrow NH_3 + H^+$ (fast)
- (III) $NO^+ + NH_3 \rightarrow NH_3NO^+$ (slow)
- (IV) $NH_3NO^+ \rightarrow H_2O + H^+ + N_2$ (fast)
- A) Rate = $k [NO^+] [NH_3]$
- B) Rate = k [NO⁺] [NH₄⁺] [H⁺]⁻¹
- C) Rate = k $[NO^+] [NH_4^+] [H^+]$
- D) Rate = k [HNO₂] [NH₄⁺] [H₂O]⁻¹
- E) Rate = k [NH₃] [H⁺] [HNO₂] [H₂O]⁻¹
- 12) A red laser emits pulses of 679 nm and 0.528 J/pulse. How many photons are produced per pulse?

13) Given the following data, choose t	he correct expression for the rate law:
$BrO_{3}^{-}(aq) + 5 Br^{-}(aq)$	$H + 6 H^+ (aq) \rightarrow 3 Br_2 (aq) + 3 H_2O (l)$

					$(1) k[BrO_3^{-1}]^{1/2}[Br^{-1}][H^{+1}]$
Exp	[BrO ₃ ⁻] (M)	[B r ⁻] (M)	[H ⁺] (M)	Rate (M/s)	$(1) k[BrO_3^{-1}][Br^{-1}][H^{+1}]^{1/2}$
1	0.175	0.175	0.175	1.126 x 10 ⁻²	(3) k[BrO ₃ ⁻][Br ⁻] ^{1/2} [H ⁺]
2	0.350	0.175	0.175	2.251 x 10 ⁻²	(4) k[BrO ₃ ⁻][Br ⁻][H ⁺] ²
3	0.175	0.525	0.175	3.376 x 10 ⁻²	$(5) \text{ k[BrO_3^-][Br^-][H^+]}$
4	0.350	0.175	0.263	5.084 x 10 ⁻²	