Fall 2023 CHM 2045 Exam 1 Review
The material covered is from chapters 1-5

$$
{ }^{0} 0_{0}^{35} C 1 \rightarrow x
$$

${ }^{1} 10^{33} \mathrm{C} 1 \rightarrow y$

1. The two most abundant isotopes of chlorine are ${ }^{35} \mathrm{Cl}(34.99 \mathrm{amu})$ and ${ }^{37} \mathrm{Cl}(36.99 \mathrm{amu})$. What are their percent abundances? (Hint: Use value from periodic table)
a) ${ }^{35} \mathrm{Cl}$ is $37 \% \cdot{ }^{37} \mathrm{Cl}$ is $63 \% \quad 1=x+y 35.45=34.99 x+36.99_{y}$
b) ${ }^{35} \mathrm{Cl} \mathrm{is} 23 \% ;{ }^{3} \mathrm{Cl}$ is $77 \%-x-x \quad 35.45=34.99 x+36.99(1-x)$
c) ${ }^{35} \mathrm{Cl}$ is $77 \% ;{ }^{37} \mathrm{Cl}$ is $23 \% 1-x=y \quad 35.45=34.99 x+36.99(1-x)$
d) ${ }^{35} \mathrm{Cl}$ is $63 \% ;{ }^{37} \mathrm{Cl}$ is $37 \% \underbrace{-\mathbf{- x}}=\boldsymbol{Y}$
e) ${ }^{35} \mathrm{Cl}$ is $50 \% ;{ }^{37} \mathrm{Cl}$ is 50%
$\begin{aligned} & 35.45=34.9 a a_{x}+36.9 a-36.9 a_{x} \\ &+1.54-2 x \\ &+186.09\end{aligned}$

$$
\begin{aligned}
& \text { rum dichromate: : } \\
& \mathrm{NH}_{4}^{+} \\
& \text {moles of each } \mathrm{Cr}_{1}^{2-} \\
& \mathrm{O}_{1}^{2-} \\
& \left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}
\end{aligned}
$$

I. $0.241 \mathrm{~mol} \mathrm{Al}^{3+}$
II. $\quad 0.459 \mathrm{~mol} \mathrm{Al}^{3+}$
V. $2.76 * 10^{23}$ atoms Al
ix. $\quad 1.66 * 10^{24}$ atoms O
VI. $\quad 5.47 * 10^{24}$ atoms Al X. $9.32 * 10^{23}$ atoms O
III. $\quad 0.987 \mathrm{~mol} \mathrm{SO}_{4}{ }^{2-}$
IV. $0.688 \mathrm{~mol} \mathrm{SO}_{4}{ }^{2-}$
$\begin{array}{ll}\text { VII. } & 4.14^{*} 10^{23} \text { atoms S } 78.5 \mathrm{~g} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot \frac{1 \mathrm{~mol}\left(\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}\right.}{342.15 \mathrm{~g} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}}=0.2294 \mathrm{~mol} \mathrm{Al}\end{array}$
a) II, IV, V, VII, IX

$$
2294 \mathrm{~mol} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot \frac{2 \mathrm{~mol} \mathrm{Al}}{1 \mathrm{~mol} \mathrm{Al}_{2}\left(\mathrm{Sol}_{4}\right)_{3}}=0.45 \mathrm{~mol} \mathrm{Al}^{3+} \cdot \frac{6.022 \times 10^{23} \mathrm{atrass}}{1 \mathrm{~mol} \mathrm{Al}}=2.76 \times 10^{3} \mathrm{athasAl}
$$

b) I, III, VI, VIII, X
c) I, II, IV, VI, VIII, X

$$
2294 \mathrm{~mol} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot \frac{3 \mathrm{~mol} \mathrm{SO}_{4}}{\left.1 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{SSO}_{4}\right)_{3}}=0.688{\mathrm{~mol} \mathrm{SO}_{4}^{2-}}_{2 \mathrm{mols}^{3}}^{1 \mathrm{~mol} \mathrm{SO}_{4}} \cdot \frac{6022 \times 10^{23} \mathrm{arms}}{1 \mathrm{mols}^{3}}=4.14 \times 10^{23} \text { atoms }
$$

d) II, III, V, VII, IX
e) None of the above
4. You have a concentrated stock solution of HCl . The concentration is 8.2 M and there is 1.5 L of stock solution. 752 mL of stock solution are taken and diluted to 1.2 L in a volumetric flask. 65 mL of this new solution are taken and diluted to 125 mL in another volumetric flask. What is the final concentration?
a) 2.7 M
b) 6.2 M
c) 8.2 M
d) 3.4 M

$\rightarrow \mathrm{SO}_{2} \mathrm{~B}$
e) 4.5 M

$$
8.2 M(.-7521)=\left.1.21(x)\right|_{\text {sedition }} ^{1}
$$

$$
x=5.139 \mathrm{M}
$$

$$
\begin{aligned}
& \text { timon } \\
& * M_{3}=M_{2}=x=5.139 M \\
&(5.139 M)(.065 L)=(.125 L) \cdot Y
\end{aligned}
$$

*Temperature always has to be in Kelvin
V, p. for gas laws
5. In an experiment, 25.0 mL of a gas with a pressure of 1.00 atm is contained in a balloon at $25.00^{\circ} \mathrm{C}$. The balloon's temperature is adjusted until the pressure is 0.75 atm at a volume of 31.1 mL . What is

6. Write the balanced molecular and net ionic equations for the combination of silver nitrate and
7. Given 2.68 M of strontium phosphate, what are the mols of phosphate ion in 689 mL ?
a) 9.81 mol
b) 3.69 mol
c) 7.78 mol
d) 2.43 mol
e) 6.75 mol
8. Gypsum is a common hydrate salt. It has the general formula $\mathrm{CaSO}_{4} \cdot x \mathrm{H}_{2} \mathrm{O}$. If the molar mass of gypsum is $172.17 \mathrm{~g} / \mathrm{mol}$, what is x ?
9. What is the mass of CO_{2} if 8.2 g of nonene $\left(\mathrm{C}_{9} \mathrm{H}_{18}\right)$ and 20 g of O_{2} are combusted? And which is the limiting reactant?
a) Nonene, 23 g
b) $\mathrm{O}_{2}, 16 \mathrm{~g}$
c) Nonene, 25 g
d) $\mathrm{O}_{2}, 18 \mathrm{~g}$
e) $\mathrm{O}_{2}, 27 \mathrm{~g}$

$$
\begin{gathered}
2\left(\mathrm{C}_{9} \mathrm{H}_{18}+\mathrm{O}_{2} \rightarrow 9 \mathrm{CO}_{2}+9 \mathrm{H}_{2} \mathrm{O}\right) \\
9 \mathrm{C} \frac{2120}{272} \quad 9 \mathrm{C} \quad 18 \mathrm{H} \\
18 \mathrm{H}
\end{gathered}
$$

$$
2 \mathrm{CaH}_{18}+27 \mathrm{O}_{2} \rightarrow 18 \mathrm{CO}_{2}+18 \mathrm{H}_{2} \mathrm{O}
$$

$$
8.2 \mathrm{~g} \mathrm{C}_{9 H_{18}} \cdot \frac{1 \mathrm{~mol}_{\mathrm{CH}}^{18}}{} 126 \mathrm{gCaH}_{18} \cdot \frac{18 \mathrm{~mol} \mathrm{CO}_{2}}{2 \mathrm{molCaH}_{18}}=0.5857 \mathrm{molco}_{2}
$$

$$
\star 20 \mathrm{~g} \mathrm{H}_{2} \cdot \frac{1 \text { mat }_{2}}{32 \mathrm{~g} \mathrm{O}_{2}} \cdot \frac{18 \mathrm{~mol} \mathrm{CO}_{2}}{27 \mathrm{motr}_{2}}=0.4167 \mathrm{molco}_{2}^{\downarrow}
$$

$$
\begin{aligned}
& \begin{array}{ll|l}
\text { a) } 1 & C a \rightarrow 40.08 & 40.08 \\
\text { b) } 2 & S \rightarrow 32.07 & 32.07 \\
\text { c) } 3 & 0 \rightarrow(16) 4 & 4=64+\downarrow \\
\text { d) } 4 & 04 \\
\text { e) } 5 & 136.1591 \mathrm{mgl}
\end{array} \\
& 172.17-136.15=36.029 / \mathrm{mol} \\
& \mathrm{H}_{2} \mathrm{O} \underset{3.02}{ } \mathrm{\sim}^{18} \\
& 36 / 18.02=\sim 2
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{Sr}^{2+} \mathrm{PO}_{4}{ }^{3-} \rightarrow \mathrm{Sr}_{3}\left(\mathrm{PO}_{4}\right)_{2} \\
& \frac{2.68 \mathrm{~mol} \mathrm{sr}_{3}\left(\mathrm{POH}_{4}\right)_{2}}{14} \cdot .6894 \cdot \frac{2 \mathrm{~mol} \mathrm{PO}_{4}^{3-}}{1 \mathrm{~mol} \mathrm{ri}_{3}\left(\mathrm{~Pa}_{4}\right)_{2}}=3.6 \mathrm{PO}_{4}^{3-1}
\end{aligned}
$$

sodium chromate.

$$
\begin{aligned}
& \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq})+2 \mathrm{AgNO}_{3}(\mathrm{aq}) \rightarrow 2 \mathrm{NaNO}_{3}^{(a q)} \mathrm{Ag}_{2} \mathrm{CrO}_{4}(\mathrm{~s})
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{CrO}_{4}^{2}-\left(a q^{2}\right)+2 \mathrm{Ag}^{\dagger}(a q) \rightarrow \mathrm{Ag}_{2} \mathrm{CrO}_{4}(\mathrm{aq})
\end{aligned}
$$

10. Consider 2.00 moles of Argon, an ideal gas, at a density of $5.00 \mathrm{~g} / \mathrm{L}$ and a pressure of 2.00 atm . What is the closest value to the temperature (in K) of this gas?
a. 172 K
b. 273 K
c. 304 K
d. 195 K
11. What is the mass of $\mathrm{V}(\mathrm{OH})_{5}$ formed when 624 mL of $0.389 \mathrm{M} \mathrm{VCl}_{5}$ reacts with 893 mL of 0.651 M of $\mathrm{Ca}(\mathrm{OH})_{2}$? $2 \mathrm{VCl}_{5}+5 \mathrm{Ca}(\mathrm{OH})_{2} \rightarrow 2 \mathrm{~V}(\mathrm{OH})_{5}+5 \mathrm{CaCl}_{2}$

e. $31.6 \mathrm{~g} \frac{1 \mathrm{~g}}{1 \mathrm{y}}=0.881 \mathrm{~mol} \mathrm{Malvr}_{2} \underbrace{2 \mathrm{MaH})_{5}=0.2325}_{5 \mathrm{Mar}}$
12. Using the question 11 's chemical reaction, how many mL are left over of the excess read ant? $V(\mathrm{DH})_{s}$
a. 30 mL \&. $2325 \mathrm{~mol} \mathrm{~V}(\mathrm{COt})_{5} . \frac{2 \mathrm{~mol} V \mathrm{VCl}_{5}}{2 \mathrm{Vol}}=.2325 \mathrm{~mol}$ used
b. 90 mL

$$
2 \mathrm{molV}(\mathrm{OH})_{\mathrm{s}} \quad \downarrow^{\mathrm{Cls}}
$$

c. 512 mL
d. 26 mL
e. 410 mL
$.2427 \mathrm{~mol} \mathrm{VCl} s-.2325 \mathrm{molval}_{s}=.0102 \mathrm{~mol}$ \qquad
letruer .38 ama
13. Balance and identify the type of reaction, oxidizing agent, and reducing agent of each
equation: O|L

$$
=.0262 L
$$

$2 \mathrm{~N}_{2} \mathrm{O}_{5}->\mathrm{NO}_{2}+\mathrm{O}_{2}$
RIG Of

$$
R A
$$

$42 \mathrm{~N} 42 \times N$

$$
=26.2 \mathrm{~mL}
$$

$10 \$ 08 \times 20+20$
$\begin{array}{ccc}0 & 0 & \left.\begin{array}{c}-4 \\ \mathrm{~S}_{8}+\mathrm{F}_{2} \rightarrow-\mathrm{SF}_{4}\end{array}\right]\end{array}$
$\left.\begin{array}{l}S_{8}=R A \\ F_{2}=O A\end{array}\right\}$ combination
$\mathrm{S}: \mathrm{O} \rightarrow+4$ oxidized
$F: 0 \rightarrow-1$ reduced
$\stackrel{+1-1}{\mathrm{CsI}+\mathrm{Cl}_{2} \rightarrow \stackrel{+1}{\mathrm{Cl}}-1 \stackrel{0}{\mathrm{Cl}}+\mathrm{I}_{2}}$
$1:-1 \rightarrow 0$ oxidised
$C_{S 1}=R A \quad$ Single
$\mathrm{Cl}: 0 \rightarrow-1$ reduced $\mathrm{Cl}_{2}=O A$ displacement

$$
\begin{aligned}
& \text { molarmass } \quad .416 \mathrm{mOlCO}_{2} \cdot \frac{44 \mathrm{gCO}_{2}}{1 \mathrm{~mol} \mathrm{CO}_{2}}=183 \mathrm{y} \\
& n_{.00} \text { moles of Argon, an ideal gas, at a density of } 5.00 \mathrm{~g} / \mathrm{L} \text { and a pressure of } 2.00 \mathrm{~atm} \text {. } \\
& \text { produced } \\
& \begin{aligned}
d \\
\text { density }
\end{aligned}=\frac{M_{p}}{R T} \frac{5.50 \mathrm{~g} / \mathrm{L}}{5 \mathrm{~g} / \mathrm{L}}=\frac{(39.95 \mathrm{~g} / \mathrm{mol})(2 \mathrm{~atm})}{\left(0.08206 \frac{\mathrm{Latm}}{\mathrm{kmol}}\right) \cdot 1 \mathrm{~cm}} \\
& x=195 k
\end{aligned}
$$

\& $\mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{H}_{2} \rightarrow 3 \mathrm{Fe}+4 \mathrm{H}_{2} \mathrm{O}$
Actual yield
14. Given the reaction $\mathrm{Fe}_{3} \mathrm{O}_{4}+\mathrm{H}_{2}->\mathrm{Fe}+\mathrm{H}_{2} \mathrm{O}$, if $0.250 \mathrm{~g} \mathrm{H}_{2}$ makes 1.49 g of $\mathrm{H}_{2} \mathrm{O}$, what is the percent yield?
b. 66.7%
c. 95.2%
d. 12.4%
e. 75.3%
a. $5.23 * 10^{-3}$
b. $6.35^{*} 10^{-3}$
c. $4.74 * 10^{-3}$
d. $9.24 * 10^{-3}$
e. $4.93 * 10^{-3}=0.004745 g \mathrm{Ca}$
16. Given 1 mol , what is the mass percent of each element in $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$? $=4.74 \times 10^{-3}$
I. $60 \% \mathrm{C}$
II. $40 \% \mathrm{C}$

$$
\text { III. } \quad 6.7 \% \mathrm{H}
$$

$$
\begin{array}{ccl}
\downarrow & \text { V. } & 31.6 \% \mathrm{O} \\
180.096 & \text { VI. } & 53.3 \% \mathrm{O}
\end{array}
$$

a. I, IV, VI
b. II, IV, VI
c. I, IV, V
d. II, III, VI
e. II, IV, V
IV. $8.4 \% \mathrm{H}$

$$
\begin{aligned}
& C: \frac{6 \times 12}{180.096} \times 100 \%=39.97 \% \sim 40 \% \\
& H: \frac{12 \times 1.008}{180.096}=6.7 \% \quad 0: \frac{6(16)}{180.0066}=53.3 \%
\end{aligned}
$$

17. What volume of 0.6143 M of strontium hydroxide would neutralize 72.59 mL of a 0.8291 M solution of hydrochloric acid?

$$
\mathrm{Sr}(\mathrm{OH})_{2}
$$

HCl
a. 62.43 mL

$$
\mathrm{SrCOH}_{2}+2 \mathrm{HCl} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{SrCl}_{2}
$$

b. 48.99 mL

b. Fe; iron (iii) sulfide
c. Au; gold (iii) sulfide
d. Al; aluminum sulfide
e. Cr ; chromium (iii) sulfide
$+3$

$$
1.62 \mathrm{gM}
$$

$$
\begin{aligned}
& 2.888 \mathrm{gs} \cdot \frac{1 \mathrm{mols}}{32.0685} \cdot \frac{2 \mathrm{molM}}{3 \mathrm{molis}}=0.0 \mathrm{mosq} \\
& \frac{1.62 \mathrm{~g}}{0.059 \mathrm{mal} ~ \mathrm{~mol}}=27.05 \\
& \rightarrow \mathrm{Al}^{3+}(\mathrm{M}=26.98 \mathrm{gmol})
\end{aligned}
$$

$$
\begin{aligned}
& =2.25 \mathrm{~g} \mathrm{H} 2 \mathrm{O}=\frac{1.49 \mathrm{~g}}{2.28 \mathrm{~g}} \times 100 \% \\
& =66.7 \%
\end{aligned}
$$

19. Balance the equation and identify the oxidation numbers, oxidizing agent, and reducing agent for the combustion of $\mathrm{C}_{7} \mathrm{H}_{14}$.
$\mathrm{C}:-2 \rightarrow+4$ oxidized $\mathrm{C}_{7} \mathrm{H}_{44}=$ reducing agent
$\mathrm{O}: 0 \rightarrow-2$ reduced $\mathrm{O}_{2}=0 \times i$ isingagent
20. What is the empirical formula of a compound that is $40 \% \mathrm{C}, 6.71 \% \mathrm{H}$, and $53.3 \% \mathrm{O}$? What is the molecular formula given that the molar mass is $240.24 \mathrm{~g} / \mathrm{mol}$?
empirical:
a. $\mathrm{CH}_{2} \mathrm{O} ; \mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{9}$

$$
4 \mathrm{gc} \cdot \frac{1 \mathrm{molc}}{12 \mathrm{~g}}=\frac{3.33 \text { moll }}{3.33} \rightarrow \frac{1}{\square} \mathrm{CH}_{2} \mathrm{O}
$$

b. $\mathrm{C}_{2} \mathrm{HO} ; \mathrm{C}_{16} \mathrm{H}_{8} \mathrm{O}_{8}$
c. $\mathrm{CH}_{2} \mathrm{O} ; \mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{8}$
d. $\mathrm{CHO}_{2} ; \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{O}_{18}$
e. $\mathrm{CH}_{2} \mathrm{O} ; \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

$$
53.390 \cdot \frac{1089}{1690}=3.33 \mathrm{~mol}=\rightarrow 1
$$

21. Consider the following reaction in a closed reaction flask: $3.33 \quad 240.24 \mathrm{hmol}$

$$
2 \mathrm{~A}_{(\mathrm{g})}+3 \mathrm{~B}_{(\mathrm{g})}->\mathrm{A}_{2} \mathrm{~B}_{3(\mathrm{~g})}
$$

$$
30.16^{9} / \mathrm{mol}=28
$$

If 1.20 atm of gas A is allowed to react with 1.20 atm of gas B , and the reaction goes to completion at constant temperature and volume, what is the total pressure (in atm) in the reaction flask at the end of the reaction?

$$
1.2 \mathrm{~atm} A \cdot \frac{1 \mathrm{~mol}_{2} B_{3}}{2 \mathrm{molA}}=0.6 \mathrm{~atm} A_{2} B_{3}
$$

a. $\quad 0.4 \mathrm{~atm}$
b. 0.8 atm
c. 1.2 atm

$$
n
$$

d. 2.4 atm

$$
\begin{aligned}
& \mathrm{C}_{7} \mathrm{H}_{14}+\frac{21}{2} \mathrm{O}_{2} \rightarrow 7 \mathrm{H}_{2} \mathrm{O}+7 \mathrm{CO}_{2} \text { i } \quad 70+140=210 \\
& 2{ }_{2}^{-2+1}+2 \mathrm{C}_{14} \mathrm{O}_{2} \rightarrow 14 \mathrm{H}_{14}^{+4-2} \mathrm{CO}_{2}^{-2}+14 \mathrm{H}_{2} \mathrm{H}^{+-2}
\end{aligned}
$$

-

