Broward Teaching Center

Find this review and more at:

https://teachingcenter.ufl.edu/tutoring/test-reviews/

- 1. Which of the following values has 3 significant figures?
 - (1) 0.032
 - (2)700
 - (3) 50.
 - (4) 0.000430
 - (5) .004
- 2. 57mL of 0.50 M solution of sodium hydroxide is needed to neutralize 22mL of hydrobromic acid of unknown concentration during a titration. Write out the reaction formula then find the unknown concentration of the acid.

 $NaOH + HBr \rightarrow NaBr + H_2O$

1.3 M

- 3. Compound Z has two stable isotopes: Z-45 and Z-44. Z-45 has a mass of 44. 9757 amu and Z-44 has a mass of 43.899 amu. If the atomic mass of Z is 44.3026 amu, then what is the abundance of isotope Z-44?
 - (1) 37.5%
 - (2) 62.5%
 - (3) 78.3%
 - (4) 23.3%
 - (5) 13.5%
- 4. Determine the net ionic equation of the reaction between sodium phosphate and calcium nitrate.

$$2PO_4^{3-}(aq) + 3Ca^{2+}(aq) \rightarrow Ca_3(PO_4)_2(s)$$

5. Complete combustion of a hydrocarbon yielded 3.2 g of H ₂ O and 4.5 g of CO ₂ . If the sample was found to have a mass of 124.3 g/mol, how many carbons are in the molecular formula of the hydrocarbon?
(1) 2
(2) 4
(3) 5
(4) 6
(5) 8

6. What is the percent mass of hydrogen in the molecular formula of the hydrocarbon determined in the previous question?

- (1) 22.7%
- (2) 32.1%
- (3) 87.3%
- (4) 11.2%
- (5) 32.5%

7. 10.2 mL of 0.30 M ammonium carbonate and 14.2 mL of 0.45 M of magnesium sulfate solutions undergo a double displacement reaction, what is the concentration of the insoluble product?

- (1) 0.225 M
- (2) 0.500 M
- (3) 0.750 M
- (4) 0.125 M
- (5) 0.450 M

- 8. What is the mass of the excess reactant in the previous problem?
 - (1) 0.500 g
 - (2) 0.401 g
 - (3) 0.223 g
 - (4) 0.445 g
 - (5) 0.695 g
- 9. Which of the following pairs have the higher boiling point?
 - A: CH₃CH₂OH vs. CH₃CH₂Br
 - B: H₂O vs. H₂S
 - C: Propane (C₃H₈) vs. Decane (C₁₀H₂₂)
 - (1) CH₃CH₂OH, H₂S, Propane
 - (2) CH₃CH₂OH, H₂O, Decane
 - (3) CH₃CH₂Br, H₂S, Decane
 - (4) CH₃CH₂Br, H₂O, Propane
- 10. Which of the following would you expect to have the highest vapor pressure at a given temperature? (2)

(1)
$$HO$$
 OH (2) OH (3) OH (4) OH (5) Br

- 11. Consider a solution that is 43% (m/m) bromoform (CHB $_3$) in acetone (C_3H_6O). What volume of bromoform would be needed to prepare 400 mL of this solution?
 - (1) 55.6 mL
 - (2) 20.3 mL
 - (3) 68.5 mL
 - (4) 90.3 mL
 - (5) 32.1 mL

- 12. The explosive nitroglycerin ($C_3H_5N_3O_9$) decomposes rapidly upon ignition according to the following equation:
- $4 \text{ C}_3\text{H}_5\text{N}_3\text{O}_9(\text{I}) \rightarrow 12 \text{ CO}_2(g) + 10 \text{ H}_2\text{O}(g) + 6 \text{ N}_2(g) + \text{O}_2(g)$ $\Delta\text{H}_{rxn} = -6132 \text{ kJ}$ Calculate the standard enthalpy of formation (ΔH_f) for nitroglycerin. For $\text{CO}_2(g)$, $\Delta\text{H}_{rxn} = -393.5 \text{ kJ/mol}$.
 - (1) -252.05 kJ/mol
 - (2) -1008 kJ/mol
 - (3) 458.8 kJ/mol
 - (4) 569.7 kJ/mol
 - (5) -392.1 kJ/mol
- 13. Which specie is isoelectronic with Ar?
 - (1) Ne
 - (2) F
 - $(3) O^{2-}$
 - $(4) Ca^{2+}$
 - $(5) \text{ Mg}^{2+}$
- 14. What are the correct molecular geometries for XeF₄, SOCl₂, SF₆, ClF₅, H₂O respectively?

Square planar; trigonal pyramidal; octahedral; square pyramidal; bent

- 15. In a coffee-cup calorimeter, 2.45 g of KNO₃ is dissolved in enough water to make 25.0 mL of solution. The initial temperature is 26.5°C and the final temperature is 21.3°C. Calculate the change in enthalpy for the dissolution of KNO₃ in kJ/mol. (Assuming 1.0 g/mL as the density of the solution).
 - (1) 11.2 kJ/mol
 - (2) 4.22 kJ/mol
 - (3) 22.4 kJ/mol
 - (4) 72.5 kJ/mol
 - (5) 34.9 kJ/mol

- 16. The laser emits photons with $\lambda = 640$ nm. How many photons from this laser would be required to heat 13.5 g of pure solid lead (specific heat capacity = 0.127 J/°C•g) from 25°C to its melting point (327°C)?
 - (1) 2.31×10^{23}
 - (2) 6.77×10^{20}
 - $(3) 4.04 \times 10^{18}$
 - (4) 2.03×10^{18}
 - (5) 1.67×10^{18}
- 17. What atom has the electron configuration: [Xe] 6s¹ 4f¹⁴ 5d¹⁰; Next, what is the electron configuration of Tungsten (W) using the noble gas abbreviation?

Au; [Xe] 6s² 4f¹⁴ 5d⁴

- 18. How many atoms of sulfur are in a 4.0 g sample of S_7O_2 ?
 - (1) 5.44×10^{23}
 - (2) 6.87×10^{22}
 - (3) 2.12×10^{22}
 - (4) 6.57×10^{22}
 - (5) 9.33×10^{23}
- 19. Identify the conjugate acid and base when hydrobromic acid reacts with water.

 $HBr + H_2O \rightarrow H_3O^+ + Br^ H_3O^+$ is the conj. acid; Br is the conj base

20. The following reaction is used to obtain iron from iron ore:

$$Fe_2O_3(s) + CO(g) \rightarrow Fe(s) + CO_2(g)$$

The reaction of 88.32 g Fe₂O₃ with 102.3 g CO produces 43.5 g CO₂. Determine the percent yield. (Don't forget to check if the reaction is balanced)

- (1) 69.3%
- (2) 93.2%
- (3) 11.2%
- (4) 43.6%
- (5) 59.6%