CHM1025
 Final Exam Review

Chandler Lentovich, Broward Teaching Center

Welcome!

- Lead: Chandler Lentovich
- Email: clentovich@ufl.edu
- Support: Angelica Caraballo-Santiago and Bar Elmaleh
- Please have your periodic table and a calculator!

What is limiting reagent?

- Two reagents react, you need to find out how much of each reacted
- There will be less of one reagent available to react, this will be your limiting reagent
- Use dimensional analysis to:
- Determine how much of each reagent reacts
- Determine limiting reagent
- Use limiting reagent to determine how much product is formed

Consider the following reaction: $4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}$. If $3.25 \mathrm{~g} \mathrm{NH}_{3}$ are allowed to react

 with $3.50 \mathrm{~g} \mathrm{O}_{2}$, how many grams of NO are formed?

Consider the following reaction: $\mathrm{N}_{2}+3 \mathrm{H}_{2}->2 \mathrm{NH}_{3}$. If you use 30 g of N_{2} and 10 g of H_{2}, what is

 the mass of the excess reagent?

Redox Reactions

Finding Oxidation Numbers

- Oxidation number
- The hypothetical charge of an atom if all of its bonds to different atoms were fully ionic
- Group 1 metals: always +1
- Group 2 metals: always +2
- Oxygen: usually -2
- Hydrogen: usually +1
- Halogens: usually -1
- Elements by themselves= 0 !

What is the oxidation number of each atom in $\mathrm{Fe}_{2} \mathrm{O}_{3}$? 。

What is the oxidation number of each atom in $\mathrm{H}_{2} \mathrm{CO}_{3}$? 。

How Oxidation Numbers Relate to Redox

- Loss of electrons: oxidation
- Charge gets more positive
- Gain of electrons: reduction
- Charge gets more negative
- Remember: LEO the lion goes GER!
- (Loss of Electrons=Oxidation, Gain of Electrons=Reduction)

In the reaction, $2 \mathrm{HCl}+\mathrm{Zn}->\mathrm{H}_{2}+\mathrm{ZnCl}_{2}$, which reactant is oxidized and which reactant is reduced?

In the reaction, $\mathrm{Au}+4 \mathrm{H}^{+}+\mathrm{NO}_{3}^{-}+4 \mathrm{Cl}^{-}>\mathrm{AuCl}_{4}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{NO}$, which reactant is the oxidizing agent?

Balancing Redox Reactions

- Half reaction method
- Balance each species individually
- Electrons are included
- Ensure that electrons lost= electrons gained
- Combine half reactions

Balance $\mathrm{MnO}_{4}^{-}+\mathrm{SO}_{3}^{2-} \rightarrow \mathrm{MnO}_{2}+\mathrm{SO}_{4}{ }^{2-}$ using the half reaction

 method

Titration

- You will have an acidic/basic solution
- You want it to become neutral, so you add base (acidic solution) or acid (basic solution)
- Titration stops when the solution is neutral

It takes 83 mL of a 0.45 M NaOH solution to neutralize 235 mL of an HCl solution. What was the initial concentration of the HCl solution?

It takes 38 mL of 0.75 M NaOH solution to completely neutralize a 0.092 M solution of sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$. What was the initial volume of the sulfuric acid solution, in mL?

What is the molecular geometry of NH_{3} ?

What is the molecular geometry of SF $_{6}$?

Ionic Compounds

- Cation, then anion
- Normal ending for cation, -ide ending for anion
- Remember: polyatomic anion names may not adhere to this, use THEIR name
- Ex. sulfate ion
- Transitions metals' charge indicated in name
- Determine using deductive reasoning with anion
- Ex. FeCl_{2} is iron (II) chloride

Covalent Compounds

- Name non-metal furthest to the left by its elemental name
- Name the other non-metal by its elemental name and -ide ending
- Use prefixes to indicate the number of that element in the molecule
- 1-mono, 2-di, 3-tri, 4-tetra, 5-penta, 6-hexa, 7-hepta, 8-octa, 9-nona, 10-deca-
- If mono is the first prefix, you do not need to include it
- Example: $\mathrm{N}_{2} \mathrm{O}_{4}$ is dinitrogen monoxide

What is the molecular formula of iron (III) oxide?

What is the molecular formula of carbon tetrachloride?

Empirical vs. Molecular Formula

- Empirical formula
- The simplest formula that shows the combination of atoms
- No associated molar mass
- Molecular formula
- Variant of empirical formula
- Must be given molar mass in order to determine

A compound is 40.3% carbon, 6.7% hydrogen, and 53% oxygen by mass, and has 。 a molar mass of $60.05 \mathrm{~g} / \mathrm{mol}$. What is it's molecular formula?

Specific Heat (c)

- Characteristic of a substance
- Not dependent on total mass!
- Amount of heat per unit mass required to raise the temperature by $1^{\circ} \mathrm{C}$
- Equation: $q=m c \Delta t$
- Question types
- Can be asked about q, m, or $\Delta \mathrm{t}$, and you will be given c and 2 variables
- Can be asked to find c, given 2 variables (one of them being q)

Given that the specific heat of water is $4.184 \mathrm{~J} / \mathrm{g} *$ C , if a water sample increases $3^{\circ} \mathrm{C}$ when given 50 J of heat, how much water was in the sample, in grams?

