CHM1025 Final Exam Review

Chandler Lentovich, Broward Teaching Center

Welcome!

0

0

- Lead: Chandler Lentovich
 - Email: clentovich@ufl.edu
- Support: Angelica Caraballo-Santiago and Bar Elmaleh

0

0

Ο

0

• Please have your periodic table and a calculator!

Limiting Reagent

What is limiting reagent?

- Two reagents react, you need to find out how much of each reacted
- There will be less of one reagent available to react, this will be your limiting reagent

0

Ο

0

• Use dimensional analysis to:

0

0

- Determine how much of each reagent reacts
 - Determine limiting reagent
- Use limiting reagent to determine how much product is formed

Consider the following reaction: $4NH_3 + 50_2 -> 4NO + 6H_2O$. If 3.25 g NH_3 are allowed to react with 3.50 g 0_2 , how many grams of NO are formed?

 \cap

\frown • - 1 0

Consider the following reaction: $N_2 + 3H_2 \rightarrow 2NH_3$. If you use 30g of N_2 and 10 g of H_2 , what is the mass of the excess reagent?

0

 \cap

0

ſ

0

\frown • - 1 0

Redox Reactions

Finding Oxidation Numbers

• Oxidation number

0

• The hypothetical charge of an atom if all of its bonds to different atoms were fully ionic

0

0

Ο

- Group 1 metals: always +1
- Group 2 metals: always +2
- Oxygen: usually -2
- • Hydrogen: usually +1
 - Halogens: usually -1
 - Elements by themselves= 0!

What is the oxidation number of each atom in $Fe_2 0_3$? •

 \cap

ſ

What is the oxidation number of each atom in H_2CO_3 ? •

C

(

 \mathbf{O}

How Oxidation Numbers Relate to Redox

Loss of electrons: oxidation

 Charge gets more positive

 Gain of electrons: reduction

 Charge gets more negative

 Remember: LEO the lion goes GER!

 (Loss of Electrons=Oxidation, Gain of Electrons=Reduction)

0

In the reaction, 2HCl + Zn -> H₂ + ZnCl₂, which reactant is oxidized and which reactant is reduced?

 \mathbf{O}

In the reaction, Au + 4H⁺ + NO₃⁻ + 4Cl⁻ -> AuCl₄ + 2H₂O + NO, which reactant is the oxidizing agent?

Balancing Redox Reactions

Half reaction method

0

0

- Balance each species individually
- Electrons are included
- Ensure that electrons lost= electrons gained

0

0

Ο

0

• Combine half reactions

Balance $MnO_4^- + SO_3^{2-} \rightarrow MnO_2^+ SO_4^{2-}$ using the half reaction method

0

 \mathbf{O}

0

ſ

\frown • - 1 0

\frown • - 1 0

Titration

 \cap

Ω

Titration

0

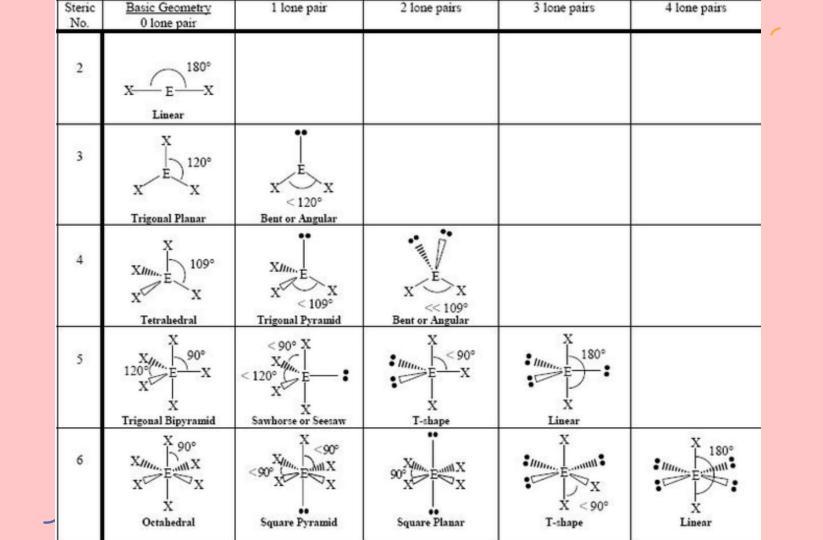
0

- You will have an acidic/basic solution
- You want it to become neutral, so you add base (acidic solution) or acid (basic solution)

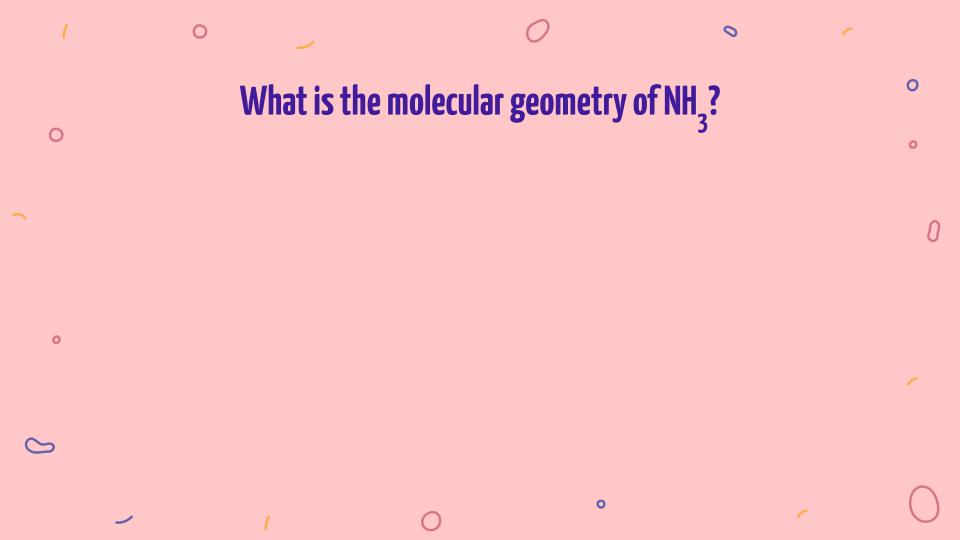
0

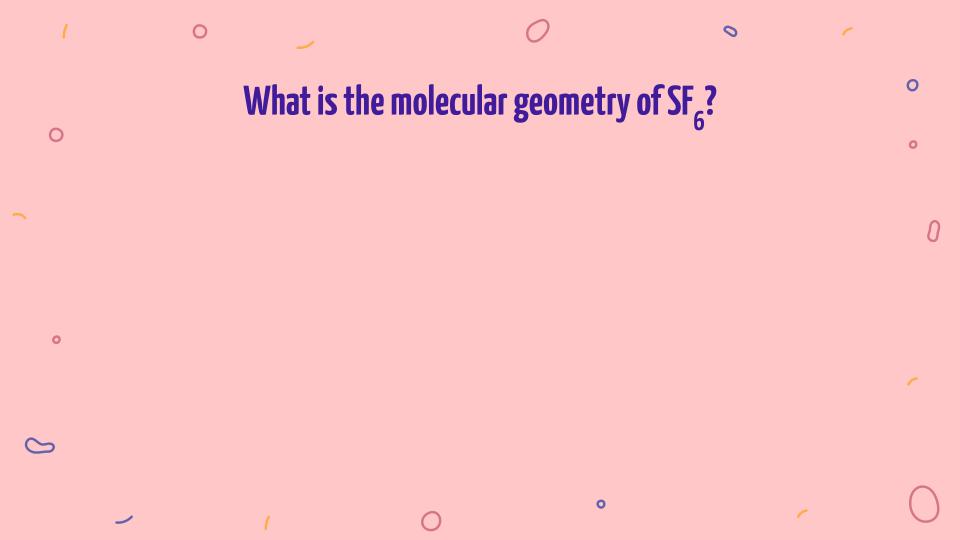
0

Ο


0

• Titration stops when the solution is neutral


It takes 83 mL of a 0.45 M NaOH solution to neutralize 235 mL of an HCl o solution. What was the initial concentration of the HCl solution?


It takes 38 mL of 0.75 M NaOH solution to completely neutralize a 0.092 M solution of sulfuric acid (H_2SO_4). What was the initial volume of the sulfuric acid solution, in mL?

Molecular Geometry

ſ

Naming

 \cap

 \bigcap

Ionic Compounds

• Cation, then anion

0

- Normal ending for cation, -ide ending for anion
- Remember: polyatomic anion names may not adhere to this, use THEIR name

0

0

- Ex. sulfate ion
- Transitions metals' charge indicated in name
 - Determine using deductive reasoning with anion

0

 \circ Ex. FeCl₂ is iron (II) chloride

Covalent Compounds

0

- Name non-metal furthest to the left by its elemental name
- Name the other non-metal by its elemental name and -ide ending

0

Ο

0

- Use prefixes to indicate the number of that element in the molecule
 - 1-mono, 2-di, 3-tri, 4-tetra, 5-penta, 6-hexa, 7-hepta, 8-octa, 9-nona, 10-deca-

- If mono is the first prefix, you do not need to include it
 - Example: N_2O_4 is dinitrogen monoxide

What is the molecular formula of iron (III) oxide?

ſ

What is the molecular formula of carbon tetrachloride?

 \mathbf{O}

Empirical vs. Molecular Formula

 \cap

Empirical vs. Molecular Formula

• Empirical formula

0

0

• The simplest formula that shows the combination of atoms

0

0

- \circ $\,$ No associated molar mass
- Molecular formula
 - Variant of empirical formula
 - Must be given molar mass in order to determine

A compound is 40.3% carbon, 6.7% hydrogen, and 53% oxygen by mass, and has a molar mass of 60.05 g/mol. What is it's molecular formula?

0

0

0

 \cap

\frown • - 1 0

Specific Heat

Specific Heat (c)

0

0

- Characteristic of a substance
 - Not dependent on total mass!
- Amount of heat per unit mass required to raise the temperature by 1°C
- Equation: q=mc∆t
 - Question types
 - Can be asked about q, m, or ∆t, and you will be given c and 2 variables

0

Ο

0

 Can be asked to find c, given 2 variables (one of them being q)

Given that the specific heat of water is 4.184 J/g*C, if a water sample increases 3°C when given 50 J of heat, how much water was in the sample, in grams?

 \mathbf{O}