CHM 1025 Exam 2 Review TUTORS: ERIN K. AND MORGAN S.

Academic Resources Reminders

- Chemistry Drop-in Tutoring in TUR1315
- Mondays and Tuesdays: 1-5pm
- Fridays: 1-3pm
- Private appointments via tutor trac
- CHM 1025 Exam 3 Review: 11/17 7-9pm
- CHM 1025 Final Exam Review: 12/8 time TBA

Ionic Compound Nomenclature

- Cation first, anion second
- Metal + nonmetal = ionic compound
- Replace end of anion name with "-ide" if it's not a polyatomic ion
- Ammonium Sulfide
- Magnesium acetate
- $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
- $\mathrm{Li}_{3} \mathrm{PO}_{4}$

Molecular Compound Nomenclature

- More than one nonmetal/metalloid = molecular compound
- Name element farthest to the left first
- Second element ends in "-ide"
- Use prefixes to specify the number of atoms (exception: don't put mono on first atom, i.e. CO_{2} is carbon dioxide NOT monocarbon dioxide)
- Mono: 1
- Di: 2
- Tri: 3

Tetra: 4

- Penta: 5
- Hexa: 6
- Hepta: 7
- Octa: 8
- Nona:9
- Deca: 10

Molecular Compound Practice

- Dinitrogen monoxide
- Phosphorous pentafluoride
- XeBr_{4}
- SO_{2}

Acid Nomenclature

- Acid: anion with one or more H^{+}(number of H^{+}depends on charge of anion)
- Case 1: anion ends in "-ide"
- Replace "-ide" with "-ic" and add "hydro-" to the beginning
- Examples: HCl
$\mathrm{H}_{2} \mathrm{~S}$
HBr
HF
- Case 2: anion ends in "-ate"
- Replace "-ate" with "-ic", no prefix!
- Examples: HNO_{3}
$\mathrm{H}_{2} \mathrm{SO}_{4}$
$\mathrm{H}_{3} \mathrm{PO}_{4}$
HClO_{3}
HClO_{4}
- Case 3: anion ends in "-ite"
- Reaplce "-ite" with "-ous", no prefix!
- Examples: $\mathrm{HClO} \quad \mathrm{HClO}_{2} \quad \mathrm{H}_{2} \mathrm{SO}_{3} \quad \mathrm{H}_{3} \mathrm{PO}_{3}$

Percent Composition

- \% composition of atom X in compound XYZ :
- $\frac{\text { mass of } X}{\text { mass of } X Y Z} \times 100 \%$
- What is the \% by mass of fluorine in carbon tetrafluoride?
- What is the \% by mass of oxygen in glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$?

Moles and Avogadro's Number

- Avogadro's number: 6.022×10^{23} (anything you want)/mol
- How many O atoms are in 4.5 moles of O_{2} ?
- How many fluorine atoms are in 7 moles of magnesium fluoride?
- How many CO_{2} molecules are in 5.2 grams of carbon dioxide?

Determining Empirical and Molecular Formulas

- A sample of a compound was found to be 40% carbon by mass, 53% oxygen by mass, and the rest hydrogen. If the molar mass of the compound is known to be $60.05 \mathrm{~g} / \mathrm{mol}$, what are the empirical and molecular formulas for this compound?
- Step 1: Assume 100g of the sample
- Step 2: Convert grams to moles
- Step 3: Divide all by the smallest number of moles

Empirical/Molecular Formulas cont.

- Step 4: Multiply/divide to get integers
- Step 5: Write the empirical formula and determine the molar mass of the empirical formula
- Step 6: Divide the actual molar mass by the empirical formula molar mass and multiply all subscripts by that number

Chemical Composition of Solutions

- 2.7 moles of sodium chloride are dissolved in 50 mL of water ($\mathrm{d}=1 \mathrm{~g} / \mathrm{mL}$).
- What is the \% by mass of sodium chloride in this solution?
- What is the \% by mass of sodium ions in this solution?
- 43 mg of lithium perchlorate are dissolved in 2.0 L of water.
- What is the molarity of lithium perchlorate in this solution?

Dilutions

- Dilution equation: $M_{1} \vee_{1}=M_{2} V_{2}$
- 3.0 mL of a stock solution that is 0.60 M in glucose is diluted with 22 mL of water. What is the concentration (in M) of the diluted solution?
- You have 10.0 mL of a stock solution that is 1.3 M in sodium acetate. What volume of water (in mL) must be added to the 10.0 mL stock solution to create a final solution that is 1.0 M in sodium acetate?

Types of Chemical Reactions

- Decompisition
- One reactant, multiple products
- Ex. $\mathrm{ZnCO}_{3} \rightarrow \mathrm{ZnO}+\mathrm{CO}_{2}$
- Combination
- Multiple reactants, one product
- $\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$
- Single Displacement
- An ion (cation or anion) goes from one compound to another
- Cation replacement: $\mathrm{Zn}+\mathrm{CuCl}_{2} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{Cu}$
- Anion replacement: $\mathrm{Br}_{2}+2 \mathrm{KI} \rightarrow 2 \mathrm{KBr}+\mathrm{I}_{2}$

Chemical Reactions cont.

- Double Displacement
- 2 ionic compounds switch cations and anions
- Look for precipitates!
- $2 \mathrm{KOH}_{\text {(aq) }}+\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})} \rightarrow \mathrm{Mg}(\mathrm{OH})_{2(s)}+2 \mathrm{KNO}_{3(\mathrm{aq})}$
- Combustion
- Hydrocarbon reacts with O_{2} and forms CO_{2} and $\mathrm{H}_{2} \mathrm{O}$
- $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
- Acid-base neutralization
- Same as double displacement but the reactants are one acid and one base
- Products are water and an ionic compound
- $\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{NaCl}$

Balancing Chemical Reactions

- Write a balanced chemical reaction for the combustion of benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$.
$\rightarrow \mathrm{Na}_{3} \mathrm{PO}_{4}+\quad \mathrm{KOH} \rightarrow \mathrm{NaOH}+\quad \mathrm{K}_{3} \mathrm{PO}_{4}$
$\Rightarrow \quad \mathrm{N}_{2}+\mathrm{H}_{2} \rightarrow \quad \mathrm{NH}_{3}$
$\Rightarrow \quad \mathrm{P}_{2} \mathrm{O}_{3} \rightarrow \quad \mathrm{P}_{4}+\mathrm{O}_{2}$
$\rightarrow \quad \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \quad\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$

Stoichiometry

- For the following unbalanced chemical reaction, how many grams of aluminum can be produced from 10.0 g of AlBr_{3} ?
- $\mathrm{AlBr}_{3}+\mathrm{K} \rightarrow \mathrm{KBr}+\mathrm{Al}$
- For the following unbalanced chemical reaction, how many moles of hydroiodic acid are needed to produce 10.0 g of manganese (III) iodide?
- $\mathrm{Mn}+\mathrm{HI} \rightarrow \mathrm{H}_{2}+\mathrm{Mnl}_{3}$

Limiting Reactants

- Consider the following unbalanced reaction. What mass (in g) of the excess reactant are left over if 10.0 g of LiCl are allowed to react with 7.0 g of Br_{2} ?
- $\mathrm{LiCl}+\mathrm{Br}_{2} \rightarrow \mathrm{LiBr}+\mathrm{Cl}_{2}$
- Consider the following unbalanced reaction. What mass (in g) of sodium carbonate can be produced if 9.0 g of NaCN are allowed to react with 15.0 g of of CuCO_{3} ?
$-\mathrm{NaCN}+\mathrm{CuCO}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{Cu}(\mathrm{CN})_{2}$

Percent Yield

- Percent yield $=\frac{\text { actual yield }}{\text { theoretical yield }} \times 100 \%$
- Consider the following balanced reaction. What is the percent yield if 8.00 g of KF are produced from the reaction of 3.30 g of F_{2} and 7.80 g of K ?
- $2 \mathrm{~K}+\mathrm{F}_{2} \rightarrow 2 \mathrm{KF}$

$q=m c \Delta T$

- $q=$ heat (J or kJ), m=mass (g), $\mathrm{c}=$ specific heat capacity (J/mol K), $\Delta T=$ change in temperature (K or C)
- A 12.50 g sample of an unknown liquid absorbs 209.1 J of heat and the temperature rises from 298.0 K to 311.6 K . What is the specific heat capacity of the liquid?

$\mathrm{q}=\mathrm{mc} \Delta \mathrm{T}$ cont.

- A 10.0 g cube of hot lead ($\mathrm{c}=0.128 \mathrm{~J} / \mathrm{g} \mathrm{C}$) with in initial temperature of 98.2 C is placed in a calorimeter filled with an unknown amount of water ($c=4.184 \mathrm{~J} / \mathrm{g} \mathrm{C}$) at 25.0 C and the temperature of the water and lead rises to 27.0 C . What mass of water (in g) is in the calorimeter?

$\mathrm{q}=\mathrm{mc} \Delta \mathrm{T}$ and $\Delta \mathrm{H}$

- $\Delta \mathrm{H}$: change in enthalpy
- For a reaction or process, $\Delta H=\frac{q}{\text { moles }}$
- 4.30 g of NaCl are dissolved in 20.0 g of water and the temperature of the water drops from 25.8 C to 28.1 C . What is $\Delta \mathrm{H}$, in $\mathrm{kJ} / \mathrm{mol}$, of the dissolution of NaCl in water? ($\mathrm{C}_{\text {water }}=4.184 \mathrm{~J} / \mathrm{g} \mathrm{K}$)

Questions?

