CHM 1025 Exam 2 Review

TUTORS: ERIN K. AND MORGAN S.

Academic Resources Reminders

Chemistry Drop-in Tutoring in TUR1315

- Mondays and Tuesdays: 1-5pm
- Fridays: 1-3pm
- Private appointments via tutor trac
- CHM 1025 Exam 3 Review: 11/17 7-9pm
- CHM 1025 Final Exam Review: 12/8 time TBA

Ionic Compound Nomenclature

- Cation first, anion second
- Metal + nonmetal = ionic compound
- Replace end of anion name with "-ide" if it's not a polyatomic ion
- Ammonium Sulfide
- Magnesium acetate
- ▶ Pb(NO₃)₂

► Li₃PO₄

Molecular Compound Nomenclature

- More than one nonmetal/metalloid = molecular compound
- Name element farthest to the left first
- Second element ends in "-ide"
- Use prefixes to specify the number of atoms (exception: don't put mono on first atom, i.e. CO₂ is carbon dioxide NOT monocarbon dioxide)
 - Mono: 1
 - ▶ Di: 2
 - Tri: 3
 - Tetra: 4
 - Penta: 5
 - Hexa: 6
 - Hepta: 7
 - Octa: 8
 - Nona: 9
 - Deca: 10

Molecular Compound Practice

- Dinitrogen monoxide
- Phosphorous pentafluoride

► XeBr₄

► SO₂

Acid Nomenclature

- Acid: anion with one or more H⁺ (number of H⁺ depends on charge of anion)
- Case 1: anion ends in "-ide"
 - Replace "-ide" with "-ic" and add "hydro-" to the beginning
 - Examples: HCI H₂S HBr HF
- Case 2: anion ends in "-ate"
 - Replace "-ate" with "-ic", no prefix!
 - $\blacktriangleright \text{ Examples: HNO}_3 \qquad H_2 \text{SO}_4 \qquad H_3 \text{PO}_4 \qquad \text{HCIO}_3 \qquad \text{HCIO}_4$
- Case 3: anion ends in "-ite"
 - Reaplce "-ite" with "-ous", no prefix!
 - $\blacktriangleright Examples: HCIO HCIO_2 H_2SO_3 H_3PO_3$

Percent Composition

- % composition of atom X in compound XYZ:
 - $\blacktriangleright \frac{mass of X}{mass of XYZ} x100\%$
- What is the % by mass of fluorine in carbon tetrafluoride?

• What is the % by mass of oxygen in glucose $(C_6H_{12}O_6)$?

Moles and Avogadro's Number

- Avogadro's number: 6.022 x 10²³ (anything you want)/mol
 - ▶ How many O atoms are in 4.5 moles of O₂?

▶ How many fluorine atoms are in 7 moles of magnesium fluoride?

▶ How many CO₂ molecules are in 5.2 grams of carbon dioxide?

Determining Empirical and Molecular Formulas

- A sample of a compound was found to be 40% carbon by mass, 53% oxygen by mass, and the rest hydrogen. If the molar mass of the compound is known to be 60.05 g/mol, what are the empirical and molecular formulas for this compound?
- Step 1: Assume 100g of the sample

Step 2: Convert grams to moles

Step 3: Divide all by the smallest number of moles

Empirical/Molecular Formulas cont.

Step 4: Multiply/divide to get integers

Step 5: Write the empirical formula and determine the molar mass of the empirical formula

Step 6: Divide the actual molar mass by the empirical formula molar mass and multiply all subscripts by that number

Chemical Composition of Solutions

- 2.7 moles of sodium chloride are dissolved in 50 mL of water (d=1 g/mL).
 - What is the % by mass of sodium chloride in this solution?
 - What is the % by mass of sodium ions in this solution?

- 43 mg of lithium perchlorate are dissolved in 2.0 L of water.
 - What is the molarity of lithium perchlorate in this solution?

- Dilution equation: $M_1V_1 = M_2V_2$
- 3.0 mL of a stock solution that is 0.60 M in glucose is diluted with 22 mL of water. What is the concentration (in M) of the diluted solution?

You have 10.0 mL of a stock solution that is 1.3 M in sodium acetate. What volume of water (in mL) must be added to the 10.0 mL stock solution to create a final solution that is 1.0 M in sodium acetate?

Types of Chemical Reactions

Decompisition

- One reactant, multiple products
- ► Ex. $ZnCO_3 \rightarrow ZnO + CO_2$
- Combination
 - Multiple reactants, one product
 - $\blacktriangleright SO_3 + H_2O \rightarrow H_2SO_4$
- Single Displacement
 - An ion (cation or anion) goes from one compound to another
 - ► Cation replacement: $Zn + CuCl_2 \rightarrow ZnCl_2 + Cu$
 - ► Anion replacement: $Br_2 + 2KI \rightarrow 2KBr + I_2$

Chemical Reactions cont.

Double Displacement

- 2 ionic compounds switch cations and anions
- Look for precipitates!
- ► $2KOH_{(aq)} + Mg(NO_3)_{2(aq)} \rightarrow Mg(OH)_{2(s)} + 2KNO_{3(aq)}$
- Combustion
 - Hydrocarbon reacts with O_2 and forms CO_2 and H_2O
 - $\blacktriangleright CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$
- Acid-base neutralization
 - Same as double displacement but the reactants are one acid and one base
 - Products are water and an ionic compound
 - ► HCI + NaOH \rightarrow H₂O + NaCI

Balancing Chemical Reactions

- Write a balanced chemical reaction for the combustion of benzene (C_6H_6).
- $\blacktriangleright Na_3PO_4 + KOH \rightarrow NaOH + K_3PO_4$
- $\blacktriangleright N_2 + H_2 \rightarrow NH_3$
- $\blacktriangleright P_2O_3 \rightarrow P_4 + O_2$
- $\blacktriangleright NH_3 + H_2SO_4 \rightarrow (NH_4)_2SO_4$

Stoichiometry

- For the following unbalanced chemical reaction, how many grams of aluminum can be produced from 10.0 g of AlBr₃?
 - $\blacktriangleright \qquad \mathsf{AlBr}_3 + \mathsf{K} \rightarrow \mathsf{KBr} + \mathsf{Al}$

- For the following unbalanced chemical reaction, how many moles of hydroiodic acid are needed to produce10.0 g of manganese (III) iodide?
 - $\blacktriangleright Mn + HI \rightarrow H_2 + MnI_3$

- Consider the following unbalanced reaction. What mass (in g) of the excess reactant are left over if 10.0g of LiCl are allowed to react with 7.0g of Br₂?
 - ► LiCl + $Br_2 \rightarrow LiBr + Cl_2$

- Consider the following unbalanced reaction. What mass (in g) of sodium carbonate can be produced if 9.0g of NaCN are allowed to react with 15.0g of of CuCO₃?
 - ► NaCN + $CuCO_3 \rightarrow Na_2CO_3 + Cu(CN)_2$

Percent Yield

• Percent yield = $\frac{actual yield}{theoretical yield} x100\%$

Consider the following balanced reaction. What is the percent yield if 8.00 g of KF are produced from the reaction of 3.30 g of F₂ and 7.80 g of K?

► $2K + F_2 \rightarrow 2KF$

- > q=heat (J or kJ), m=mass (g), c=specific heat capacity(J/mol K), ∆T=change in temperature (K or C)
- A 12.50 g sample of an unknown liquid absorbs 209.1 J of heat and the temperature rises from 298.0 K to 311.6 K. What is the specific heat capacity of the liquid?

$q=mc\Delta T cont.$

A 10.0 g cube of hot lead (c=0.128 J/g C) with in initial temperature of 98.2 C is placed in a calorimeter filled with an unknown amount of water (c=4.184 J/g C) at 25.0 C and the temperature of the water and lead rises to 27.0 C. What mass of water (in g) is in the calorimeter?

$q=mc\Delta T$ and ΔH

- AH: change in enthalpy
 - For a reaction or process, $\Delta H = \frac{q}{moles}$
- 4.30 g of NaCl are dissolved in 20.0 g of water and the temperature of the water drops from 25.8 C to 28.1 C. What is ΔH, in kJ/mol, of the dissolution of NaCl in water? (C_{water}=4.184 J/g K)

Questions?