CHM1025

Exam 2 Review

Chandler Lentovich, Teaching Center

Introduction

\boldsymbol{x} Leader: Chandler Lentovich
x Support: Sundip Singh
x We will be covering the more complicated subjects
x Chemistry drop-in tutoring (Turlington 1315)
x Monday:1pm-5pm
x Wednesday:1pm-5pm
x Friday:1pm-3pm
\boldsymbol{x} This will be recorded and posted on the Teaching center website

Balancing Reactions

x Note which atoms only show up in one molecule on each side (with different quantities!]
x Set those equal to each other
x Note quantities of all other atoms on each side
x Make adjustments until the quantities of all atoms are equal
x If there's a polyatomic ion present on BOTH sides, it can be treated as one unit

$? \mathrm{Mg}(\mathrm{OH})_{2}+? \mathrm{HCl} \rightarrow ? \mathrm{MgCl}_{2}+? \mathrm{H}_{2} \mathrm{O}$

$? \mathrm{SiO}_{2}+? \mathrm{HF} \rightarrow ? \mathrm{SiF}_{4}+? \mathrm{H}_{2} \mathrm{O}$

$? \mathrm{CaCl}_{2}+? \mathrm{Na}_{3} \mathrm{PO}_{4} \rightarrow ? \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+? \mathrm{NaCl}$

Limiting Reagents

x Typically, you'll be given grams of each reactant to start x Find moles of each reactant
x Calculate yield that each reactant produces
x Note reactant that produces lowest amount of yield. This yield will be your answer.

$\mathrm{NaCl}+\mathrm{AgNO}_{3} \rightarrow \mathrm{NaNO}_{3}+\mathrm{AgCl}$

x How many grams of AgCl will be produced from 7.00 g of NaCl and 95.0 g of AgNO_{3} ?

$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

x How many grams of CO_{2} will be produced from $15.0 \mathrm{~g} \mathrm{CH}_{4}$, and 114 g of O_{2} ?

Polyatomic lons Recap

x Great resource: Symbols and Names for Common
Polyatomic lons
x Understanding polyatomics differing in oxygen number
x Most Os: per[base name]ate
x [base name]ate
x [base name]ite
x Least Os: Hypo[base name]ite
x Just remember the [base name]ate version Cusually most common, and figuring other ones out will be much easier

[Base Name]ate: Chlorate $\left(\mathrm{ClO}_{3}{ }^{-}\right)$

x One more 0: ClO_{4}^{-}: perchlorate
x One less $\mathrm{O}: \mathrm{ClO}_{2}$: chlorite
x One less O than chlorite: ClO^{-}: hypochlorite

[Base Name]ate: Sulfate $\left(\mathrm{SO}_{4}{ }^{2-}\right)$

x One less $0: \mathrm{SO}_{3}{ }^{2}$: sulfite
x Note: know how many variations of the base name exist for each polyatomic with multiple Os!

Same Concept With Acids

x Understanding acids differing in oxygen number
x Most Os: per[base name]ate

- per[base name]ic acid
x [base name]ate
- [base name]ic acid
x [base name]ite
- [base name]ous acid
x Least Os: hypo[base name]ite
- hypo[base name]ous acid

Chloric Acid $\left(\mathrm{HClO}_{3}\right)$ Acid Derivatives

x One more $0: \mathrm{HClO}_{4}$: perchloric acid
$x \quad \mathrm{HClO}_{3}$: chloric acid
x One less 0 : HClO_{2} : chlorous acid
x One less 0 than chlorous acid: HClO : hypochlorous acid

Bronsted-Lowry Acids and Bases

x Acids donate an H^{+}
x Bases accept an H^{+}
x Example: $\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{NaCl}$

Calorimetry

$x \quad 1$ nutritional Calorie=1000 chemical calories $=1 \mathrm{kcal}$
x Difference: capital C
$\boldsymbol{x} \quad 1$ kcal $=4184$ joules
x You can solve for various variables with the $q=m c \Delta t$ equation
$x \quad q=$ heat
x m=mass
X $\mathrm{c}=$ specific heat (will be given this or you'll be solving for it)

- Water= $4.184 \mathrm{~J} / \mathrm{g}^{*} \mathrm{C}$, but if they give you something different, use that
$x \quad t=$ temperature
x Always check your units!

A food sample is burned in a calorimeter that contains 2000 g of water. The temperature increases from $22^{\circ} \mathrm{C}$ to $44.3^{\circ} \mathrm{C}$. How many Calories (kcal) does this food sample contain if the specific heat of water is 4,186 $\mathrm{J} / \mathrm{kg}{ }^{*} \mathrm{C}$?

Using ΔH

x Can be given for one mole of reaction or multiple moles
x They have to tell you which one
x Negative value= exothermic
X Releases energy
x Positive value=endothermic X Absorbs energy
x If they ask how much energy is released/absorbed, just give the magnitude as your answer

What mass, in grams, of PbS is converted to lead oxide if $1,350.775 \mathrm{~kJ}$ of heat is liberated in the reaction between PbS and O_{2} ?

Percent Yield

x Theoretical yield: found through stoichiometry
x Percent yield: found through experimentation, mathematically related to theoretical yield

Percent Yield $=\frac{\text { Actual Yield }}{\text { Theoretical Yield }} \times 100 \%$

You drop some of the iron that you are using in an experiment, making your yield of Iron (III) Oxide 19.7 g . What is your percent yield if the equation for this reaction is $\mathrm{Fe}+\mathrm{O}_{2} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}$?

If your percent yield is 94.9%, what mass in grams of hydrogen is produced by the reaction of 4.73 g of Mg with 1.839 of $\mathrm{H}_{2} \mathrm{O}$?

Thank You！：）

$$
\begin{aligned}
& \text { 葡 } \\
& \text { 元 } \\
& \text { (\%) } \\
& \text { H0 } \\
& \text { (0) } \because \\
& \text { now } \\
& \text { = } \\
& y \\
& \text { 22 } \\
& 30 \\
& \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

