$0^{0^{\circ}{ }^{\circ} \mathrm{O}} \longrightarrow \mathrm{H}_{2} \mathrm{O}=0$

СНM 1025
 Exam 1 Review

Academic Resources

Welcome!

- Drop-In Tutoring: Schedule
- Monday and Tuesday: $1 \mathrm{pm}-5 \mathrm{pm}$
- Zoom Link
- Friday: 1pm-3pm
- Zoom Link
- Private Appointments: Scheduling Link

$$
\begin{aligned}
& \text { Ionic vS. } \\
& \text { Molecular } \\
& \text { CompoundS }
\end{aligned}
$$

Ionic CompoundS

- Ionic compounds consists of multiple elements connected by ionic bond(s)- electrostatic attraction of opposite charges
- lonic bond= metal + nonmetal
- Naming rules
- State cation first, then anion
- Roman numerals can be used for ions that have multiple forms
- This happens for cations with multiple possible oxidation states, like copper
- Change anion ending to -ide

Covalent CompoundS

- Ionic compounds consists of multiple elements connected by covalent bond(s)- sharing of electron pair(s) between atoms
- lonic bond= metalloid + nonmetal or nonmetal + nonmetal\}
- Naming rules
- Name the non-metal furthest to the left on the periodic table by its elemental name
- Name the other non-metal by its elemental name and an -ide ending
- Use the prefixes mono-, di-, tri-.... to indicate the number of that element in the molecule
- Note: if mono- is the first prefix, it is understood and not written

Prefixes for Covalent CompoundS

- 1: mono-
- 2: di-
- 3: tri-
- 4: tetra-
- 5: penta-
- 6: hexa-
- 7: hepta-
- 8: octa-
- 9: nona-
- 10: deca-

How many atoms of phosphorus are in 7.9 g of $\mathrm{P}_{4} \mathrm{~S}_{10}$?

Compound X has three isotopes: $X-28, X-29$, and $X-30 . X-28$ has a mass of 27.9769 amu and is 92.2% abundant. X-29 has a mass of 28.9765 amu and is 4.67% abundant. $X-30$ has a mass of 29.9737 amu is 3.10% abundant. Calculate the atomic mass of compound X .

Polyatomic
Ions

Polyatomic Ions Recap

- NOT made of multiple ions
- Covalently-bonded set of two or more atoms that holds an overall charge
- Great resource: Symbols and Names for Common Polyatomic lons
- Understanding polyatomics differing in oxygen number
- Most Os: per[base name]ate
- [base name]ate
- [base name]ite
- Least Os: Hypo[base name]ite
- Just remember the [base name]ate version (usually most common), and figuring other ones out will be much easier

[BaSe Name]ate: Chlorate ($\mathrm{ClO}_{3}{ }^{-}$)

- One more $\mathrm{O}: \mathrm{ClO}_{4}$: perchlorate
- One less O: ClO_{2} : chlorite
- One less O than chlorite: ClO: hypochlorite

[BaSe Name]ate: Sulfate $\left(\mathrm{SO}_{4}{ }^{2-}\right)$

- One less $\mathrm{O}: \mathrm{SO}_{3}{ }^{2-}$: sulfite
- Note: know how many variations of the base name exist for each polyatomic with multiple Os!

Significant Figures

Which Figures are Significant?

- All non-zero numbers
- Zeroes between two non-zero digits
- Trailing zeroes in a number with a decimal - To the RIGHT of the decimal
- In scientific notation, only the coefficient (the part that comes before "x10") has significant figures

Which Figures are NOT Significant?

- Leading zeroes
- To the LEFT of the decimal
- Trailing zeroes in numbers without decimals

Significant Figures: Rules

x Non-zero digits are always significant
X Any zeros between two significant digits are significant
X A final zero or trailing zeros in the decimal portion ONLY are significant
x Addition and Subtraction:
x Count the number of significant figures in the decimal portion ONLY of each number in the problem
$x \quad$ Add or subtract in the normal fashion
$X \quad$ Your final answer may have no more significant figures to the right of the decimal than the LEAST number of significant figures in any number in the problem.
x Multiplication and Division:
x The LEAST number of significant figures in any number of the problem determines the number of significant figures in the answer

- (You are now looking at the entire number, not just the decimal portion)

How many Significant figures are present in the value 5.04×10^{3} ?

How many Significant figures are present in the value 302,000?

How many Significant figures are present in the value 0.040 ?

Perform the following calculation to the correct number of significant figures.

$$
\left[\left(1.7 \times 10^{6}\right) \div\left(2.63 \times 10^{5}\right)\right]+7.33
$$

Density

Density Recap

- A physical property that describes how much mass is present in a given space
- Density= mass/volume
- Example: If a cube has a side length of 5 cm and has a mass of 40 g , what is its density, in $\mathrm{g} / \mathrm{cm}^{3}$?

Diamonds are measured in carats and one carat equals 0.200 grams. The density of diamond is $3.51 \mathrm{~g} / \mathrm{cm}^{3}$. What is the volume in cm^{3} of a 5.0 carat diamond?

A proton has a radius of approximately $1.0 \times 10^{-6} \mathrm{~nm}$ and a mass of $1.7 \times$ $10^{-27} \mathrm{~kg}$. Determine the density of a proton. For a sphere, $\mathrm{V}=(4 / 3) \pi \mathrm{Tr}^{3}$.

A pure titanium cube has an edge length of 2.78 in. How many titanium atoms does it contain? ($\mathrm{D}_{\mathrm{Ti}}=4.50 \mathrm{~g} / \mathrm{cm}^{3}$).

$$
\begin{aligned}
& q=m c \Delta t \\
& \text { practice }
\end{aligned}
$$

If you have a 688.71 g chunk of thorium ($\mathrm{d}=11.724 \mathrm{~g} / \mathrm{mL}, \mathrm{C}=0.12 \mathrm{~J} / \mathrm{g}^{*} \mathrm{~K}$), how hot (in K) must you heat the thorium in order for the chunk of metal to have enough energy to heat a 0.991 L sample of chloroform from 298 K to 334 K ?

A student must use 225 mL of hot water in a lab procedure. Calculate the amount of heat required to raise the temperature of 225 mL of water from $20.0 / \mathrm{C}$ to $100.0 / \mathrm{C}$.

A 40.0 g sample of ethanol releases 2952 J as it cools from $50.0^{\circ} \mathrm{C}$. Calculate the final temperature of the ethanol.

Questions?

